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Preface
 

Forest resources are crucial in the context of sustainable development and 
climate change mitigation. Dynamic information on the location and evo­
lution of forest resources are needed to properly define, implement, and  
evaluate strategies related to multilateral environmental agreements such 
as the UN Framework Convention on Climate Change (UNFCCC) and the 
Convention on Biological Diversity. For the global change scientific com­
munity and the UNFCCC process, it is important to tackle the technical 
issues surrounding the ability to produce accurate and consistent estimates 
of greenhouse gas emissions and removals from forest area changes world­
wide and at the country level. 

The following compilation of chapters constitutes a review of why and how 
researchers currently use remotely sensed data to study forest cover extent 
and loss over large areas. Remotely sensed data are most valuable where 
other information, for example, forest inventory data, are not available, or 
for analyses of large areas for which such data cannot be easily acquired. 
The ability of a satellite sensor to synoptically measure the land surface from 
national to global scales provides researchers, governments, civil society, 
and private industry with an invaluable perspective on the spatial and tem­
poral dynamics of forest cover changes. The reasons for quantifying forest 
extent and change rates are many. In addition to commercial exploitation 
and local livelihoods, forests provide key ecosystem services including cli­
mate regulation, carbon sequestration, watershed protection, and biodiver­
sity conservation, to name a few. Many of our land use planning decisions 
are made without full understanding of the value of these services, or of the 
rate at which they are being lost in the pursuit of more immediate economic 
gains through direct forest exploitation. Our collection of papers begins with 
an introduction on the roles of forests in the provision of ecosystem services 
and the need for monitoring their change over time (Chapters 1 and 2). 

We follow this introduction with an overview on the use of Earth observa­
tion datasets in support of forest monitoring (Chapters 3 through 5). General 
methodological differences, including wall-to-wall mapping and sampling 
approaches, as well as data availability, are discussed. For large-area moni­
toring applications, the need for systematically acquired low or no cost data 
cannot be overstated. To date, data policy has been the primary impedi­
ment to large-area monitoring, as national to global scale forest monitor­
ing requires large volumes of consistently acquired and processed imagery. 
Without this, there is no prospect for tracking the changes to this key Earth 
system resource. 

The main section of the book covers forest monitoring using optical data 
sets (Chapters 6 through 14). Optical datasets, such as Landsat, constitute 
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viii Preface
 

the longest record of the Earth surface. Our experience of using them in 
mapping and monitoring forest cover is greater than that of other datasets 
due to the relatively rich record of optical imagery compared to actively 
acquired data sets such as radar imagery. The contributions to this section 
range from indicator mapping at coarse spatial resolution to sample-based 
assessments and wall-to-wall mapping at medium spatial resolution. The 
studies presented span scales, environments, and themes. For example, forest 
degradation, as opposed to stand-replacement disturbance, is analyzed in 
two chapters. Forest degradation is an important variable regarding biomass, 
emissions, and ecological integrity, as well as being a technically challenging 
theme to map. Chapters 6 through 14 also present a number of operational 
systems, from Brazil’s PRODES and DETER products, to Australia’s NCAS 
system. These chapters represent the maturity of methods as evidenced by 
their incorporation by governments into official environmental assessments. 
The fourth section covers the use of radar imagery in forest monitoring 
(Chapter  15). Radar data have a long history of experimental use and are 
presented here as a viable data source for global forest resource assessment. 

We believe that this book is a point of departure for the future advancement 
of satellite-based monitoring of global forest resources. More and more 
observing systems are being launched, methods are quickly maturing, and the 
need for timely and accurate forest change information is increasing. If data 
policies are progressive, users of all kinds will soon have the opportunity to 
test and implement forest monitoring methods. Our collective understanding 
of forest change will improve dramatically. The information gained through 
these studies will be critical to informing  policies that balance the various 
demands on our forest resources. The transparency provided by Earth 
observation data sets will, at a minimum, record how well we perform in 
this task. 

We deeply thank Prof. Emilio Chuvieco from the University of Alcalá 
(Spain) who gave us the opportunity to publish this book and supported and 
encouraged us in its preparation. We also sincerely thank all the contributors 
who kindly agreed to take part in this publication and who together have 
produced a highly valuable book. 

Frédéric Achard and Matthew C. Hansen 
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6.1 Introduction 

6.1.1 MODIS 

The MODIS (Moderate Resolution Imaging Spectroradiometer) sensor 
onboard NASA’s Terra spacecraft has advanced large-area land monitor­
ing during its 10-plus years of operation. Compared to heritage instru­
ments such as the advanced very high-resolution radiometer (AVHRR) 
meteorological sensor, MODIS represented a significant gain in global 
land mapping and monitoring capabilities. First, the MODIS sensor has a 
finer instantaneous field of view compared to other global daily observing 
systems, including bands with 250, 500, and 1000 m spatial resolutions. 
Second, MODIS was built with seven bands specifically designed for land 
cover monitoring by avoiding wavelengths affected by atmospheric scat­
tering and absorption. Third, the 250 m spatial resolution of the red and 
near-infrared bands was designed specifically to enable the monitoring 
of land cover change (Justice et al. 1998). Other sensors with global land 
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94 Global Forest Monitoring from Earth Observation 

monitoring capabilities, including SPOT VEGETATION and ENVISAT 
MERIS, with 1  km and 300 m spatial resolutions, respectively, have also 
been designed for land monitoring applications. However, MODIS retains 
the finest spatial resolution observational capability for this class of sen­
sors. While a second MODIS sensor onboard NASA’s Aqua spacecraft was 
launched in 2002, MODIS Terra data have been more widely used in land 
cover analyses and are the data used in the study presented here. 

6.1.2 Global Forest Cover Mapping to Date 

A viable solution to examining trends in forest cover change over large areas is 
to employ remotely sensed data. Satellite-based monitoring of forest clearing 
can be implemented consistently across large regions at a fraction of the cost 
of obtaining extensive ground inventory data. Forest inventories are typically 
unable to quantify forest dynamics at annual intervals due to the costs and 
logistical challenges of frequently revisiting plots. On the other hand, remotely 
sensed data enable the synoptic quantification of forest cover and change at 
regular intervals, providing information on where and how fast forest change 
is taking place at annual or finer time scales (INPE 2008). While numerous 
national-scale forest change products exist, global forest change characteriza­
tions are comparatively rare. Initial global forest mapping efforts focused on 
static map products of forest cover, typically as part of multiclass land cover 
classifications. The IGBP DISCover project (Loveland et al. 2000) used 1 km 
AVHRR data to produce a global land cover product that included forest leaf 
type and longevity classes, as did Hansen et al. (2000) with the University of 
Maryland (UMD) land cover map. Friedl et al. (2002) advanced these efforts in 
creating the standard MODIS land cover product (MOD12Q1), and Bartholomé 
et al. (2005) used SPOT VEGETATION data to produce the Global Landcover 
2000 (GLC2000) product, both of which contained multiple forest type/density 
classes. Similarly, the Globcover initiative used 300 m ENVISAT MERIS data 
to produce a global multiforest class land cover map for 2005–2006 (Arino et al. 
2007). Forests as a specific target have been mapped at the global scale as well. 
Global subpixel percent tree cover maps have been generated using AVHRR 
data (Hansen and DeFries 2004) and as a standard product using MODIS 
data, the vegetation continuous field (VCF) of percent tree cover (Hansen et al. 
2003). Regarding global forest change, the 8 km AVHRR Pathfinder data set 
was used to estimate tree cover change from 1982 to 1999 from time-sequential 
percent tree cover maps (Hansen and DeFries 2004). 

6.1.3 Global Forest Cover Loss Mapping Using MODIS 

A more recent global forest cover change assessment employed MODIS data 
to quantify gross forest cover loss (Hansen et al. 2010). In this study, MODIS 
500 m forest cover loss indicator maps were used to stratify biomes into 
homogeneous regions with respect to change (high, medium, and low forest 
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cover loss strata). Within each stratum, samples of Landsat data were drawn 
and analyzed in order to estimate forest cover extent in 2000 and forest cover 
loss from 2000 to 2005. Stratum-specific regression estimators incorporat­
ing the MODIS-derived forest cover loss data as an auxiliary variable were 
applied to generate the final forest cover loss estimates. These results demon­
strated the effectiveness of using the MODIS forest cover loss data to provide 
a spatially fine-grained stratification that offered an improvement over more 
generalized hot spot stratifications subjectively delineated to define low and 
high forest clearing strata (Achard et al. 2002). 

The focus of this study is to extend this previous MODIS work and map 
indicated forest cover loss at 250 m spatial resolution over the 2000–2010 
period. To do so, a turn-key algorithm is run on the 2000–2005 and 2005–2010 
epochs. Previous work on multiyear forest cover change quantification using 
AVHRR data employed a recalibrated model for each year of analysis (Hansen 
and DeFries 2004). However, as MODIS data feature consistent radiometric 
calibration (Vermote et al. 2002), it is expected that the change signal being 
trained upon may be reliably and repeatedly captured over time. Our previ­
ous work with MODIS has employed turn-key models applied annually to 
identify change (Hansen et al. 2008; Potapov et al. 2008). For this study, we 
employ a fixed characterization algorithm for the 2000–2005 and 2005–2010 
epochs. Calibration issues with MODIS have been studied, and a degrada­
tion of the near-infrared band quantified for MODIS Terra (Wang et al. 2012). 

Given this fact, the use of turn-key approaches to repeatedly mapping land 
cover with the Terra instrument has come into question (Vermote E., personal 
communication). We present the following results more as a demonstration 
of global change mapping methods and not as a definitive long-term envi­
ronmental change record. MODIS data are imaged nearly daily at the global 
scale, improving the probability of cloud-free acquisitions. This high-tempo­
ral acquisition frequency ensures a consistent and largely cloud-free image 
feature space at annual time scales. However, the moderate spatial resolution 
of MODIS is a limitation for area estimation of forest cover loss as much forest 
disturbance occurs at sub-MODIS pixel scales. The most appropriate use of 
MODIS for forest monitoring is as an alarm or hot spot indicator (INPE 2008; 
Hansen et  al. 2010; Shimabukuro et al. 2012). Area estimation requires the 
integration of MODIS with a higher spatial resolution sensor, such as Landsat 
or another medium spatial resolution data source. MODIS-only products such 
as the ones presented in this study capture relative rates of forest cover loss 
across space and through time, with a considerable omission rate for small-
scale forest disturbances. 

The method presented here demonstrates a global assessment of forest 
cover loss using MODIS data from 2000 to 2010. For this study, forest clearing 
equals gross forest cover loss during the study period without quantification 
of contemporaneous gains in forest cover due to reforestation or afforestation. 
Forest cover loss is defined as a stand-replacement disturbance of a forest, 
where forest is defined as an assemblage of trees having a height of 5 m or 
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greater and a canopy crown cover in excess of 25% at the MODIS pixel scale. 
The method could be implemented repeatedly for both forest cover loss and 
gain in establishing internally consistent biome-scale trends in both gross 
and net forest cover loss and gain. 

6.2 Data 

The 2000–2011 global Terra/MODIS 250 m data 16-day composite data set 
(MOD44C, collection 5) from the University of Maryland was used. This data 
set was originally created as an input to the vegetative continuous fields and 
vegetative cover conversion product and is described in Carroll et  al. (2010). 
Four reflective bands—band 1/red (620–670 nm), band 2/near infrared (841– 
876 nm), band 6/shortwave infrared (1,628–1,652 nm), and band 7/shortwave 
infrared (2,105–2,155 nm), along with band 31/thermal (10,780–11,280 nm) and 
computed normalized difference vegetation index (NDVI)—were used. 

Six-year MODIS metrics were derived for 2000 through 2005 and 2005 
through 2011. Metrics have been shown to enable large-area mapping by 
generalizing the multispectral feature space, enabling signature exten­
sion over large areas (Reed et  al. 1994; DeFries et  al. 1995; Hansen et  al. 
2005). Each band was ranked individually and by temperature and NDVI. 
Ranked metrics calculated for all bands included 0, 10, 25, 50, 75, 90, and 
100 percentiles. Averages between percentiles were also calculated. Annual 
metrics were generated and used as metrics and as inputs to a time-series 
regression calculation. Means of the three values corresponding to highest 
annual NDVI and band 31 brightness temperature were derived and used as 
the annual inputs and for the regression calculation. 

An extensive Landsat-scale training data set was produced for calibrating 
the algorithm. National-scale products for Indonesia (Broich et  al. 2011); the 
Democratic Republic of the Congo (Potapov et al. in press); European Russia 
(Potapov et al. 2011); Quebec, Canada; and Brazil, along with an additional 203 
image pairs, were used as training data. The majority of the training data were 
from the 2000 to 2005 epoch. Only the Indonesia and Democratic Republic of 
the Congo data included 2005–2010 change data. The Landsat-scale forest cover 
loss maps were aggregated to the MODIS grid as percent forest cover loss. 
A total of over 23,000,000 pixels at MODIS scale were available as training data. 

6.3 Algorithm 

Decision trees are a type of distribution-free machine learning tool appro­
priate for use with remotely sensed data sets (Michaelson et al.  1994; 
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Hansen et  al. 1996; Freidl and Brodley 1997). They are the primary 
algorithmic tool used in the standard MODIS land VCF products (Hansen 
et al. 2003). The VCF products depict the per pixel percent cover of basic 
vegetation traits, such as herbaceous and tree cover. As trees are distribu­
tion free, they allow for the improved representation of training data within 
the multispectral space. The relationship between the independent and 
dependent variables need not be monotonic or linear. This allows for more 
flexible subsetting of the multispectral image space not feasible with many 
other methods and is most appropriate for large-area studies that feature 
complicated multispectral signatures. In addition, the tree structure enables 
the interpretation of the explanatory nature of the independent variables. 

Trees can accept either categorical data in performing classifications 
(classification trees) or continuous data in performing subpixel percent cover 
estimations (regression trees) (Breiman et al. 1984). For this study, we used the 
regression tree algorithm of the S-Plus statistical package (Clark and Pergibon 
1992) to depict percent forest cover loss. Methods to avoid  overfitting of 
tree models are available. One such approach entails  performing multiple, 
independent runs of decision trees via sampling with replacement. This 
procedure is called bagging (Breiman 1996). A 10% sample of the training 
data was used to create each tree, which related the dependent percent forest 
cover loss variable to the set of MODIS-independent variables. Eleven trees 
were generated, and the median percent forest cover loss from all bagged 
trees was retained as the per pixel result. To reduce errors of  commission, we 
thresholded the output product at 30% forest cover loss, converting each map 
to a yes/no forest cover loss estimate per 250 m MODIS pixel. 

6.4 Results 

Figure 6.1 shows a global-scale annual growing season metric derived from 
shortwave infrared, near-infrared, and red growing season imagery from 
2000. The spectral feature space is largely cloud free, but persistent haze 
and partial cloud cover exist in the Andes Mountains of Colombia,  northern 
Brazil, the central African coast along the Gulf of Guinea, and montane 
Borneo and New Guinea (the haze and residual cloud cover are not visible in 
the figure). The humid tropics are the only region where atmospheric effects 
are present in the MODIS metric feature space. Other potential limitations, 
such as seasonal forests and variable growing season length, are not readily 
apparent in the metric feature space. 

Figures 6.2 and 6.3 provide an example of the derived metric feature space 
for an area of Mato Grosso, Brazil, and Quebec, Canada,  respectively. For 
these subsets, blue represents year 2000 growing season band 7  shortwave 
infrared reflectance (mean of the band 7 values corresponding to the three 
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FIGURE 6.2 
(See color insert.) 400 km × 400 km subset centered on 12° 4’ S, 55° 59’ W in Mato Grosso, 

Brazil. False-color composite of MODIS band 7 growing season metrics—blue: 2000 mean band 

7 shortwave infrared reflectance from the three greenest 16-day composite periods, green: dif­

ference in the 2000 and 2005 mean band 7 shortwave infrared reflectance from the three green­

est 16-day composite periods, and red: difference in the 2005 and 2010 mean band 7 shortwave 

infrared reflectance from the three greenest 16-day composite periods. 

FIGURE 6.3 
(See color insert.) 400 km × 400 km subset centered on 51° 45’ N, 72° 8’ W in Quebec, Canada. 

False-color composite of MODIS band 7 growing season metrics—blue: 2000 mean band 7 

shortwave infrared reflectance from the three greenest 16-day composite periods, green: differ­

ence in the 2000 and 2005 mean band 7 shortwave infrared reflectance from the three greenest 

16-day composite periods, and red: difference in the 2005 and 2010 mean band 7 shortwave 

infrared reflectance from the three greenest 16-day composite periods. 



 MODIS/Landsat area = MODIS-indicated change × 0 86  . + 0 68  . 
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greenest 16-day composite periods). Areas that are dark in this metric are typ­
ically forest (water has been masked out prior to analysis). Green represents 
the difference for this metric from 2000 to 2005 and red the  difference from 
2005 to 2010. Pixels that have high increases for this metric, and have an ini­
tial dark state (~<5% reflectance), are likely to represent forest disturbance. 
For the Brazil subset, a dramatic reduction in forest cover loss can be inferred 
from this false-color composite image. The proportion of 2000–2005 change 
dwarfs that from 2005 to 2010. For the Canada subset, a less dramatic reduc­
tion is observed, related to a predominantly fire-driven dynamic. The tree 
bagging algorithm formalized the labeling of all forest cover loss pixels. 

The global total of MODIS hot spot pixels covered 500,000 km2 from 2000 to 
2005 and 360,000 km2 from 2005 to 2010. The total MODIS-indicated forest 
cover loss represents 50% of the total area of gross  forest cover loss from the 
MODIS/Landsat study of Hansen et al. (2010). In other words, the Landsat 
sample-based area estimate of gross forest cover loss equaled 1,011,000 km2, 
while the MODIS hot spot mapped area equaled 500,000 km2. The MODIS-
indicated forest cover loss pixels were  aggregated to the same sampling grid 
as the Hansen et al. study and compared. The following relation yielded an 
r2 of 0.64 and a standard error of 1.73%: 

Areas from the Hansen et  al. (2010) study were reported only for those 
regions or nations that had sufficient Landsat samples to provide a reason­
able uncertainty estimate. These areas included the four major forested 
biomes (humid tropical, dry tropical, temperate, and boreal), all continents 
except Antarctica, and countries with over 1,000,000 km2 of forest cover in 
2000. The gross forest cover loss data from Hansen et al. (2010) are plotted 
against the MODIS-indicated change in Figure 6.4. 

The degree of forest cover loss omission in the MODIS data is clear. As 
stated before, fully half of the global forest cover loss from the Hansen 
et al. (2010) study is not mapped with MODIS. Regardless, there is a strong 
overall relationship. Areas where small-scale disturbance predominates, 
such as Africa, feature the highest proportion of omitted, or cryptic, change. 
In Figure 6.4 the continent of Africa and the nation of the Democratic 
Republic of the Congo have the highest ratio of MODIS/Landsat area 
of forest loss to MODIS-indicated forest loss. This reflects the finer and 
more diffuse  pattern of forest change in Africa where most  clearing is  
performed in swidden  agricultural settings too small for  quantification 
using MODIS data. Areas with large agroindustrial clearing, such as 
Brazil, South America as a whole, and Indonesia, have the lowest omission 
rates. 

The model was applied to the two study intervals, and a comparison of 
the amount of change hot spots was made. Figures 6.5 and 6.6 illustrate the 
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FIGURE 6.4 
Plot of area of MODIS-indicated forest cover loss versus gross forest cover loss area for reported 

regions. (From Hansen, M.C., et al., Proc. Natl. Acad. Sci., 107, 8650, 2010.) 

global distribution of MODIS-indicated forest cover loss. The most obvious 
change in the patterns of forest cover loss is found in Brazil. As Shimabukuro 
et al. (2012) report, the Brazilian government has sought to reduce the clear­
ing of Amazonian forests, efforts that have included the use of satellite data 
as an enforcement tool. The global results from Figures 6.5 and 6.6 confirm 
this reduction. Contrary to this trend is a marked increase in the clearing 
of the Chaco woodlands of Bolivia, Paraguay, and Argentina between the 
two periods. Africa is largely absent of large-scale change, with only the 
agroforestry of South Africa evident at this scale. For tropical Asia, Indonesia 
exhibits a rise in forest cover loss over the study period. Epochal variation at 
higher latitudes is less evident and largely due to variations in high latitude 
fire dynamics as well as storm damage. In general, forest cover losses due to 
fire appear greater in the 2000–2005 interval than in the 2005–2010 interval 
(see Alaska, Siberia, and Australia). Areas of active forestry practices feature 
prominently in both epochs. 

Figures 6.7 through 6.9 show the change in MODIS-indicated forest cover 
loss over the study period. At the biome scale, significant reductions in 
forest cover loss within the humid tropical and boreal biomes are found. 
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Brazil’s reduced clearing drives the humid tropical change, while less forest 
cover loss due to fire drives the boreal forest change. At the continental scale, 
the same dynamics are evident, with Europe and Africa exhibiting little or no 
change in forest cover loss. For countries with greater than 1 Mha of year 2000 
forest cover, only Indonesia exhibits a clear increase in forest cover loss. 
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FIGURE 6.7 
MODIS-indicated forest cover loss totals per forested biome for the 2000–2005 and 2005–2010 
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FIGURE 6.9 
MODIS-indicated forest cover loss totals per country for the 2000–2005 and 2005–2010 epochs 

(only countries with greater than 1,000,000 km2 of forest cover in 2000). 

The results, as shown in Figure 6.4, have significant errors of omission, 
mainly related to the coarse scale of observation, as stated previously. 
Obvious commission errors are associated largely with two environmen­
tal dynamics. First, residual haze and cloud cover impact the metric space 
and lead to noise-related commission errors in a few humid tropical regions 
referred to earlier. Second, wetlands are very dynamic in their patterns of 
spectral change as floods arrive and recede along with attendant vegetation 
responses. Wetland formations are another source of forest change com­
mission error. Finally, the uncertainty regarding the radiometric stability of 
the Terra instrument could significantly impact the repeated use of a single 
model over the two 5-year intervals. Further study is required to resolve 
the impact of Terra’s radiometric degradation on the observed forest extent 
changes of this study, particularly between the two 5-year epochs. 

6.5 Conclusion 

The combined high-temporal observation frequency and moderate spatial reso­
lution of MODIS data enable global forest change indicator mapping. The abil­
ity to synoptically characterize forest disturbance at the global scale allows for 
direct comparison of change rates through time and across space. The continu­
ous acquisition of multispectral observations at the global scale for 10+ years 
illustrates the value of operational systems in quantifying environmental 
dynamics. As noted, such analyses are dependent on a stable radiometric data 
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source. While MODIS is not an operational system, it enables the develop­
ment of methods that can be implemented with operational systems such as 
the recently launched VIIRS (Visible Infrared Imager Radiometer Suite) instru­
ment (Justice et al. 2010). This is a critical monitoring tool of indicators of global 
change, such as forest dynamics, and its value will only increase with the length 
of the high-temporal, moderate spatial resolution data record. 

Our results document a pervasive and changing global forest disturbance 
dynamic. Overall, a reduction in stand-replacement forest disturbance from 
2000 to 2005 and 2005 to 2010 was found. However, the data represent only 
indications of forest cover loss, not an estimation of total area, and may 
also be affected by degradation of the Terra sensor. Differences in epochal 
change illustrated here are a function of the scale of MODIS observations. 
Definitive quantification of aerial change over time could be different than 
that observed with MODIS and would require finer scale time-series imag­
ery for either direct forest area loss estimation or calibration of the MODIS 
indicator product. The clearest reduction in forest cover loss occurred in 
Brazil and is related to policy and enforcement efforts to improve regulation 
of forest clearing in the Brazilian Amazon. Forest cover loss related to fire 
appeared to decline over the two epochs as well. The drivers of global forest 
change are many, and the spatial patterns seen in the MODIS change prod­
ucts capture four principle drivers: (1) agroindustrial scale clearing related to 
land use conversions and forestry practices, (2) fire, (3) disease, and (4) storm 
damage. Attributing each identified change pixel to a specific driver would 
greatly enhance the utility of the data for a host of land use and biogeochemi­
cal cycle modeling applications. 

The ability to quantify both forest cover extent and change independent 
of land use designations is important in generating a consistent narrative of 
global forest change. Global observing systems such as MODIS enable such 
quantifications, but are limited in area estimation. As the discipline moves 
forward, high-temporal observations will be needed at finer resolutions in 
order to generate global forest cover extent and change maps that can be 
used directly in estimating area change. Landsat data, which have included 
a global acquisition strategy (Arvidson et al. 2001) and are now freely avail­
able (Woodcock et al. 2008), will be the data source to extend the methods 
developed using MODIS to finer spatial scales. 
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7.1 Introduction 

This chapter presents an operational remote sensing approach for monitoring 
forest cover at continental and global levels, based on a statistical sampling 
design and on satellite imagery from optical sensors of moderate spatial 
resolution (30 m × 30 m resolution). 

There are two main approaches to forest characterization and monitor­
ing with remotely sensed data (Achard et al. 2010): analyses that cover the 
full spatial extent of the forested areas, termed “wall-to-wall” coverage, or 
those that select a  statistical sample of forested areas for careful  analysis and 
extrapolate the findings to the entire area of interest. Wall-to-wall mapping 
has long been done with relatively coarse spatial  resolution  satellite data and, 
currently, moderate spatial  resolution  wall-to-wall  analyses are  possible 
(see following Chapters 9 to 13 for examples of wall-to-wall analyses). 
However, spatially exhaustive analyses are challenging to operationalize 
on frequent time intervals and over very large, heterogeneous areas. 
Statistical sampling approaches, therefore, serve an important role in 
providing cost-effective, timely, repeatable estimates of forest character­
istics over large areas and at frequent time intervals (e.g., Brink and Eva 
2009; Broich et al. 2009; Duveiller et al. 2008; Eva et al. 2010). A sampling 
procedure that adequately represents deforestation events (e.g., through a 
sufficiently dense systematic or stratified sample in space and time) can 
capture deforestation trends. 

Whichever overall approach is chosen, sampling or wall-to-wall, the spa­
tial unit of analyses or minimum mapping unit (MMU) must also be decided 
upon. There are two main choices for this. In pixel-based approaches, 
the smallest unit of analysis is the individual image pixel. Object-based  
approaches use pixel clustering algorithms to create spectrally homoge­
nous pixel groupings, which are thereafter treated as individual units for 
analysis. 

For the Global Forest Resources Assessment 2010 (FRA 2010), the FAO 
(Food and Agriculture Organization of the UN) has extended its global 
and continental monitoring of forest cover changes to include analysis 
of remotely sensed land cover and land use as a complement to standard 
national reporting. The survey applies object-based image analysis methods 
to a globally distributed, systematic sample of moderate-resolution satellite 
imagery to estimate forest land cover and land use change for the periods 
1990–2000 and 2000–2005. The FAO has produced estimates of tropical 
forest cover changes as part of past assessments (FRA 1990, 2000), but 
the remote sensing survey (RSS) of FRA 2010 has been extended to all 
lands (FAO et al. 2009). This survey has been conducted by a partnership 
between FAO and its member countries, the European Commission Joint 
Research Centre (JRC) as the main scientific partner, South Dakota State 



 
 

 
 

 
 

 

  

Use of a Systematic Statistical Sample with Moderate-Resolution Imagery 113 

University,  the  United States Geological Survey (USGS), and the U.S. 
National Aeronautics and Space Administration (NASA). Over 200 national 
experts from 106 countries have participated in the survey. 

This chapter presents the scientific and technical methods that have been 
developed for monitoring forest cover changes in the framework of this 
global survey. 

7.2 Sampling Strategy 

The grid system selected for the global systematic sample is a rectilinear 
grid, based on degrees of geographical latitude and longitude (Figure 7.1), 
that enables a straightforward implementation, and easy location and 
understanding (Mayaux et al. 2005). Although stratified sampling is 
generally preferable for improving the efficiency of land cover change 

FIGURE 7.1 
(See color insert.) Example of time series (for years 1990, 2000, and 2005) of Landsat satellite 

imagery over one sample site in the Amazon Basin (20 km × 20 km size). Forests appear in dark 

green, deforested areas (agriculture and pastures) appear in light green or pink. 
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estimation (Stehman et al. 2011), a systematic, nonstratified sampling has 
been implemented because: 

 1.   This sampling scheme is intended to be also used for future time  
periods (for year 2010 and later), and it is impossible to reliably pre­
dict where deforestation “hot spots” will be located in future years. 

 2. The systematic sample scheme can be easily intensified for specific 
purposes, in particular for assessment at a national level or for a  
particular ecosystem. Indeed, a number of countries supported by  
FAO are already carrying out national forest assessments based on 
an intensification of the global sampling scheme (http://www.fao. 
org/forestry/nfma).  

The global systematic sampling approach has already been tested against 
wall-to-wall reference data over the Brazilian Amazonia basin (Eva et al. 
2010). It has also been intensified and tested for the Congo River basin region 
for the 1990–2000 period (Duveiller et al. 2008) and for the French Guiana 
territory (Eva et al. 2010), demonstrating its potential to estimate forest cover 
changes from continental to regional levels (Broich et al. 2009). 

Globally, the survey involved 13,690 sample sites. Sampling has not been  
performed for latitudes higher than 75° north or south. At most sites, the 
area surveyed was 10 km  × 10 km, which represents approximately 1% of  
the world’s land surface. In the tropics, the area surveyed for each site was 
20  km  × 20 km for the period 1990–2000, which represents approximately 
3.6% of the tropics. 

7.3 Acquisition of Satellite Imagery 

Nearly complete global coverage from the Landsat satellites is now available 
at no cost from the Earth Resources Observation Systems (EROS) Data Center 
(EDC) of the USGS (http://eros.usgs.gov/). A recent product, called the Global 
Land Survey (GLS), represents a global archive of good quality, orthorectified 
and geodetically accurate image acquisitions from Landsat Multispectral 
Scanner (MSS), Landsat Thematic Mapper (TM), and Landsat Enhanced 
Thematic Mapper (ETM+) sensors focused on the epochs ca. 1975, ca. 1990, 
ca. 2000, mid-2000s, and ca. 2010 (Gutman et al. 2008). These GLS data sets 
play a key role in establishing historical deforestation rates (Masek et al. 2008), 
although in some parts of the tropics (e.g., Western Colombia, Central Africa, 
and Borneo) persistent cloud cover is a major challenge for using these data 
(Ju et al. 2009; Linquist et al. 2008). For these regions, the GLS data sets can be 
complemented by remote sensing data from other satellite sensors with similar 
characteristics, in particular, optical sensors of moderate spatial resolution. 
The GLS data sets are described with full details in Chapter 4. 

http://www.fao.org
http://www.fao.org
http://www.eros.usgs.gov
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For each sample location of the systematic grid, the available Landsat data 
(from TM or ETM sensors) were sought from the GLS database (primary 
data source). These data were downloaded at full resolution (30 m × 30 m). 
Image subsets of 20 km × 20 km covering the sample sites were extracted in 
UTM projection (Potapov et al. 2011). The sample site target size is 10 km × 
10 km, but a 5 km buffer has been used for data extraction and processing 
in order to keep contextual information. In the event of the data being unac­
ceptable (due to cloud cover or artifacts from visual screening assessment), 
replacement data were sought from different sources with the help of the 
GEOSS (Global Earth Observing System of Systems) Land Surface Imaging 
Constellation. In particular, for the 4,016 sample sites covering the tropics, 
2,868 suitable image pairs were found for the period 1990–2000 from the 
GLS data sets, representing 71.6% of the tropical sample (Beuchle et al. 2011). 
Better alternatives could be found for 26.6% of these 4,016 sites, substituting 
cloudy or missing GLS data sets at one or the other epoch or both (GLS­
1990 or GLS-2000). Gaps were filled from the USGS Landsat archives (1,070 
samples), data from other Landsat archives (e.g., GISTDA, ACRES, INPE; 
53 samples), or with alternatives to Landsat, i.e., 15 samples from SPOT 
(Satellite Pour l’Observation de la Terre). This increased the effective number 
of sample pairs to 3,945, representing 98% of all target samples. No suitable 
image pairs were found for 71 confluence points, which were not randomly 
distributed, but mostly concentrated in the Congo basin, where around 15% 
of the region remains unsampled. There is a higher number of missing sites 
in the second period assessed (2000–2005) in particular for tropical regions, 
due to the malfunctioning of the line scanner on the Landsat 7 ETM sensor 
after June 1, 2003, which corrupts around 25% of each image acquisition 
(Maxwell 2004). The missing sites in the tropics for the 2000–2005 period 
are mainly located in Central America, Ecuador, the Colombian Choco, 
the Guianas, the southern ridge of West Africa, the western part of Congo 
basin (South Cameroon, Equatorial Guinea, Gabon, and Western Congo), 
Central Democratic Republic of Congo, Eastern Tanzania, and Indonesia 
(Kalimantan, Sulawesi, and Irian Jaya). 

7.4 Preprocessing of Satellite Imagery 

For each sample site, satellite image subsets (from 1990, 2000, and 2005) were 
preprocessed for geometric control, radiometric calibration and normaliza­
tion, segmentation, and classification. Prior to the object segmentation and 
classification steps, radiometric correction to a common radiometric scale is 
required in order to apply standard supervised classification algorithms to 
the full imagery data set, making use of spectral training data of representa­
tive vegetation types. Acquisition errors and irrelevant data (e.g., clouds and 
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cloud shadows) must also be removed in the preprocessing phase. A robust 
approach applicable to a large amount of multidate and multiscene Landsat 
imagery has been developed to convert all images into normalized radio­
metric values (Bodart et al. 2011). The different preprocessing steps were 
(1) conversion to top-of-atmosphere (ToA) reflectance, (2) cloud and cloud 
shadow removals, (3) haze correction, and (4) image radiometric normaliza­
tion. The conversion to ToA reflectance was achieved by first converting 
raw digital numbers (DN) into at-sensor spectral radiance for each band 
and subsequently the at-sensor radiance was converted into ToA reflec­
tance. The remaining clouds and cloud shadows in the selected images 
were masked in two steps. The first step was to detect all potential cloud 
and cloud shadow pixels using an automatic spectral rule-based mapping 
approach followed by a second step that consisted of a sequential applica­
tion of a postprocessing algorithm based on morphological and topological 
methods designed to create a refined mask for images where clouds were 
visually identified. Image contamination by haze is relatively frequent in 
tropical regions (semitransparent clouds and aerosol layers that alter the 
spectral signatures of objects, especially in the visible bands). Partially 
contaminated images were corrected on the basis of the method using the 
fourth component of the tasseled cap transformation (TC4) computed from 
the six reflective bands of Landsat imagery. The applied image radiometric 
normalization is a relative normalization of multitemporal imagery cover­
ing different areas. Relative normalization adjusts the spectral values of all 
images to the values of one reference image. Dense evergreen forest pixels 
have been considered as pseudo-invariant features (PIF), i.e., stable targets  
between dates, assuming that reflectance differences in these stable targets 
are due to atmospheric perturbations. This normalization algorithm, referred 
to as “forest normalization,” has been applied to each sample image with sig­
nificant presence of dense evergreen forests (i.e., more than 2,000 pixels in the 
image). The median forest value parameter was extracted from a forest mask 
based on empirically determined thresholds of NDVI and bands 4 and 5 from 
Landsat imagery from years 1990 and 2000 and intersected with a 250 m for­
est map derived from the vegetation continuous field (VCF) product (Hansen 
et al. 2003). For those sites with a lower proportion of dense evergreen forests 
(i.e., less than 2,000 pixels in the image), a relative normalization has been per­
formed whenever possible by visually selecting an area that did not change 
between the two dates, using the image of year 2000 as the reference image. 

The haze correction algorithm improved the visual appearance of the image 
and significantly corrected the digital numbers for Landsat  visible  bands. 
The normalization procedures (forest normalization and relative normaliza­
tion) improved the correlation between the spectral values of the same land 
cover in multidate images. The image subsets from the year 2000 were taken 
as the reference for geometric and radiometric controls. The preprocessed 
multitemporal data set constituted the basis for an automatic object-based 
supervised classification. 
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7.5 Segmentation of Satellite Imagery 

After preprocessing, the image subsets were segmented so as to iden­
tify homogenous land units that can then be classified for each date (Raši 
et al. 2011). This approach comprises two automated steps of multidate 
image segmentation and object-based land cover classification (based 
on a supervised spectral library), followed by an intense phase of visual 
control and expert refinement. Image segmentation is done at two spatial 
scales, introducing the concept of an MMU via the automated selection of 
a site-specific scale parameter. The automated segmentation of land cover 
polygons and the pre-classification of land cover types mainly aim at avoid­
ing manual delineation and at reducing the efforts of visual interpretation of 
land cover to a reasonable level, making the analysis of 13,000 sample sites 
feasible. 

Several segmentation algorithms were tested. Based on technical 
performance and visual assessment of the object delineation, the eCognition 
software (Trimble) was chosen as most suited for our specific purpose. In 
particular, this software can process large amounts of data and classify 
objects in one common processing chain. For the purpose of forest cover 
monitoring, a multidate segmentation approach has been preferred to 
two separate, single-date image segmentations. Multidate segmentation 
integrates from the very beginning of the temporal aspect into the generation 
of spatially and spectrally consistent mapping units. For the tropical 4,000 
sites, the segmentation process was initially implemented on two-date 
imagery (1990 and 2000) in a single operation. The Landsat TM or ETM+ 
spectral bands 3, 4, and 5 (ToA reflectance values) of both reference years 
(1990 and 2000) were therefore used as a common input to the segmentation 
procedure, assigning equal weights for all six bands. The weights of two 
other parameters in the eCognition software—referred to as “spectral” and 
“shape”—had to be determined for segmentation. Based on a series of tests 
with varying settings, the main weight of 0.9 has been empirically assigned 
to the “spectral” parameter, i.e., the spectral homogeneity accounts for 
90% of the merging decision rules. The resulting weight for the “shape” 
parameter of 0.1 (as sum of the two weights = 1) proved to be sufficient for 
avoiding very irregular and fringed objects. 

The main parameter controlling the size of objects is referred to as the 
scale parameter. The higher the scale parameter, the larger the average size 
of image objects, and in particular the maximum object size. We developed 
a process that automatically determines a specific scale parameter for each 
sample site in order to reach the desired MMU. This is achieved by increas­
ing the scale parameter through iterative segmentations, until a size thresh­
old for the smallest polygons is reached: the iterative process is stopped 
when the largest object among the 5% smallest objects reaches the desired 
MMU, i.e., when at least 95% of the remaining objects in the sample site are 
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larger than the MMU. An initial MMU of 1 ha was set for the segments. This 
is a compromise between not having segments that are too small, and avoid­
ing segments with mixed land covers. The segments of the individual image 
subsets are then classified using an automated supervised classification. In 
a second phase, these classified segments are aggregated into segments of 5 
ha by increasing the scale parameter through iterative segmentations. In a 
final step, the number of the remaining small polygons below 5 ha size was 
reduced by merging each object smaller than 3 ha (corresponding to ca. 33 
Landsat TM pixels) with the object it shared the longest common borderline 
with. The image objects resulting from the multidate segmentation conform 
to a standard MMU and exhibit similar spectral characteristics in time and 
in space. This 3 ha MMU size enables a feasible visual assessment of the clas­
sification by local experts. 

7.6 Definition of Land Cover and Land Use Classes 

Four main land cover categories were defined for labeling the 1 ha MMU 
segments: “tree cover” (TC), “other wooded land” (OWL), “other land” (OL), 
and “water” (WA). TC comprises all tree cover where canopy density can be 
expected to be ≥10% and tree heights to be ≥5 m. Included are natural forests 
and forest plantations, but also tree cover outside  forests, such as in parks or 
on agricultural lands. OWL comprises all woody  vegetation of lower height 
(<5 m), mainly shrub land, but also shrub-like agricultural crops, vegeta­
tion regrowth, or plantations with small trees. OL includes all nonwoody 
land cover (e.g., herbaceous cover, pastures, nonwoody crops, burnt areas, 
bare soils, settlements), except for water. The water class consists of rivers 
and in-land water bodies. The definition for tree cover has been chosen to be 
compatible with the FAO  “forest” definition (FAO 2010). From the spectral 
and textural information of the moderate-resolution satellite imagery used 
in this study, one can only infer approximate tree density and broad height 
categories. The class thresholds served therefore rather as guidance for inter­
pretation and for selection of training areas. 

Land cover is the observed biophysical properties of the land surface, 
whereas land use is defined by the human activities and inputs on a given 
land area. Four main land use categories have been defined:  “forest,” “other 
wooded land,” “other land use,” and “water.” Treating forest as a land use 
is consistent with the forest definition used in FAO’s Global FRA country 
reports and national reports to the United Nations Framework Convention 
on Climate Change (UNFCCC). Forest land use may include periods during 
which the land is devoid of tree cover, for example, during cycles of forest 
harvesting and regeneration. In  such  cases, a land use is considered to 
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be forest land use when management or natural processes will, within a 
reasonable time, restore tree cover to the point where it  constitutes a forest. 

7.7 	  Supervised Classification of Segmented Satellite  

Imagery for the Tropical Sample Sites 

Spectral signatures were collected from the preprocessed Landsat ETM+ 
data of the year 2000 from one common set of training areas representing the 
main land cover classes within a region (Raši et al. 2011). For the first level 
classification at 1 ha, a large number of spectral classes were required to cover 
the variability of spectral reflectance within any particular land cover class, 
e.g., the TC class consists of 15 spectral classes including dense evergreen 
forests, degraded evergreen forests, dry deciduous forests in  different 
phenological phases, mangrove, and swamp forest. Only homogeneous 
land cover units were selected as training areas, using additional references 
like fine- resolution satellite data (e.g., Google Earth). The number of  pixels 
ultimately used for establishing the spectral signature of a subclass was 
generally higher than 1,000. Spectral signature statistics (means and  standard 
deviations) were calculated at the level of subclasses. 

A generic supervised classification of the 1 ha level segmentation objects 
was performed uniformly for all sample sites. The classification was 
based on membership functions established from the spectral signature 
of each subclass for the Landsat TM/ETM+ spectral bands 3, 4, and 5. The 
membership  functions of each subclass were defined as an approximation  
of the class probability distribution, represented by isosceles triangles in the 
feature space of each spectral band. The top of the triangle corresponds to 
the class mean (m) and represents the spectral value of highest probability 
for class assignment. The two triangle legs descend from that position up to 
a spectral distance of m ± 3 sd (sd = standard deviation), linearly decreasing 
the probability of class assignment to a value of “0” at the positions m ± 3 sd. 

The classification process compares the object spectral mean values to the 
membership functions defined for all subclasses. An object was assigned to 
the class displaying the highest membership probability for the object spec­
tral mean values. We applied these membership functions to the imagery of 
all reference years, having performed previous spectral calibration to ToA 
reflectance values, haze correction, as well as normalization of the satellite 
imagery. The subclasses resulting from supervised classification served only 
for the mapping of the four main land cover classes. 

The 1 ha level classified segments were automatically aggregated to 5 ha 
level into the five broad land cover classes based on the proportion of tree 
cover. The supervised classification result obtained for the 1 ha objects served 
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as direct input to the thematic aggregation done at the second-level segmen­
tation (5 ha MMU). The labeling of the second-level objects was performed 
by passing through a sequential list of classification criteria, with a main 
emphasis on tree cover proportions within second-level objects, e.g., TC class 
is defined as containing more that 70% tree cover within the 5 ha segment. As 
a consequence of merging objects from a finer scale (1 ha MMU), a “tree cover 
mosaic” class has been introduced for objects containing partial tree cover at 
the second level (objects containing an area portion of 40%–70% tree cover). 

7.8	   Visual Verification and Refinement  

of the Land Cover Classifications 

The resulting land cover multitemporal classifications are then interde­
pendently visually controlled by national experts. A dedicated graphical 
user interface has been developed for the visual verification and poten­
tial reassignment of land cover labels (Simonetti et al. 2011). For a selected 
sample site, the tool displays simultaneously the pair of image subsets (e.g., 
of 1990 and 2000) and the corresponding digitally classified land cover maps. 
The tool offers an optimized set of commands including image enhance­
ment, simultaneous zoom of displayed data, single or multiobject selection 
and relabeling, specific class selection, and highlighting. The graphical user 
interface is available in English, Spanish, French, and Russian. 

Visual control and refinement of the digital classification results at the 
5 ha MMU level were implemented using, whenever available, very high-
resolution satellite imagery (e.g., through Google Earth), but also existing 
vegetation maps and field knowledge as supplementary references: a 
revision of the mapping results was then carried out by forestry experts 
from the tropical countries who contributed local forest knowledge to 
improve the interpretation. During a final phase of regional harmonization, 
an experienced image interpreter performed a control of the interpretation 
consistency across the region, applying final corrections where necessary. 
Figure  7.2 shows a simplified example of the main steps used in visual 
verification and refinement of the land cover and land cover changes 
between 1990 and 2000. 

The phase of visual control and refinement has been designed as a cru­
cial component for correcting classification errors and for implementing the 
change assessment. The importance of visual control and correction can be 
perceived when comparing to the initial automatic classification result: e.g., 
in South East Asia about 20% of the polygon labels were changed through 
expert knowledge by visual interpretation (Raši et al. 2011). More than 
120 experts from tropical countries have been involved in this verification 
and refinement phase of the survey. 
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FIGURE 7.2 
(See color insert.) Visualization tool used for the process of verification and correction of 

 multitemporal classifications. Left column: Segmented Landsat imagery displayed (top: year 

1990, bottom: year 2000). Right column: Land cover maps produced from satellite imagery. 

7.9 Conversion of the Land Cover Maps into Land Use Maps 

Land cover maps were first converted automatically into land use maps, 
and then the conversion results were reviewed through visual control by 
national experts. The automatic conversion of land cover maps into land use 
maps uses the following systematic rules: 

r� Classes TC and tree cover mosaic are converted to forest 

r� Class OWL remains as OWL 

r� Class OL is renamed other land use 

r� Class WA remains as WA 

Because a direct translation possible from land cover to land use is not always 
possible, a visual interpretation and refinement of the land use classifications 
must be carried out by national experts. For example, when a forest has been 
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FIGURE 7.3 
(See color insert.) The 20 km × 20 km multi-spectral Landsat image (left) for a sample site in 

the boreal forest showing, for the central 10 km × 10 km portion (red box), the classification of 

land cover (center) and land use (right). Land cover is classified as TC (green), tree cover mosaic 

(light green), OWL (orange), and other land cover (yellow). Land use is classified as forest 

(green), OWL (orange), and other land use (yellow). 

clear-cut and is temporally unstocked, the land cover derived from any kind 
of automatic classification or visual interpretation will indicate something 
other than tree cover. However, the land use will remain as forest for a tem­
porary clearing caused by timber harvest or fire, and this information can 
only be inferred by local knowledge of the land use context (Figure 7.3). 

7.10	  Pr oduction of Transition Matrices and Correction  

to Reference Dates and for Missing Data 

For each sample site, land area transition matrices are produced for each 
period (1990–2000 and 2000–2005) and for both land cover and land use 
transitions (Table 7.1). 

It was not possible to acquire all images at the exact reference date, with 
acquisitions ranging from 1984 to 1992 for the first reference year (1990), 1997 
to 2003 for the second reference year (2000), and 2004 to 2009 for the third 
reference year (2005) (Beuchle et al. 2011). Each sample site’s transition matrix 
was then adjusted to the baseline dates of June 30, 1990, 2000, and 2005; this 
was done by assuming that the land cover change rates are constant dur­
ing the given period. We, therefore, linearly adjusted the land cover change 
matrices to the three reference dates. 

Cloudy areas were considered as an unbiased loss of data and assumed 
to have the same proportions of land cover as noncloudy areas within the 
same site. This is achieved by converting the transition matrices 1990–2000 
and 2000–2005 to area proportions relative to the total cloud-free land area 
of the sample site. For the missing sample sites in tropical regions, we 



 
 

 

δ jj′ = 
1 = 4

1 
4  (7.1) 

d j j  ′ (  (  lat ))  + d( ,  )  d (  (  long))  

 
 

 

 

Use of a Systematic Statistical Sample with Moderate-Resolution Imagery 123 

TABLE 7.1 

Example of Land Cover Transition Matrix for Site [North 2°; West 074°] 
(areas in km2) 

Tree Tree Cover Other Other Land 

Cover Mosaic Wooded Cover Total Year 

Year 2000/Year 1990 (TC) (TCM) Land (OWL) (OLC) WA 1990 

TC 44.9 4.4 2.8 9.8 0 61.9 

TCM 0 3.4 1.7 5.4 0 10.5 

OWL 0 0.6 4.1 3.4 0 8.1 

OLC 0 0.3 1.6 17.9 0 19.8 

WA 0 0 0 0 0 0 

Total year 2000 44.9 8.7 10.2 26.5 0 100.2 

used a local average from surrounding sample sites as  surrogate results. 
The following weights (δjj′) were applied for the local average of missing 
sites: 

where the differences in latitude and longitude between two sample sites 
(j and j′) is used with a power of 4. 

Small differences may appear between land cover proportions of year 2000 
obtained from the successive transition matrices [1900–2000] and [2000–2005] 
due to the linear temporal extrapolation to the reference dates. To correct 
for potential inconsistencies for the common year 2000, the land cover pro­
portions of year 2000 from the change matrices for period 2000–2005 are 
“calibrated” to the land cover proportions of year 2000 from the [1990–2000] 
transition matrix through a linear adjustment for each sample site. 

7.11  Production of Statistical Estimates 

For the statistical estimation phase, the sample sites are weighted in relation 
to their probability of selection (Eva et al. 2012). Indeed the sampling frame, 
although systematic, does not give equal probability because the distance 
between sites along a parallel is not the same as the distance along a meridian. 
All sample units were given a weight, equal to the cosine of the latitude, to 
account for this unequal probability. The impact of these weights is moderate 
in tropical areas. The sample sites that contain a proportion of sea compensate 
for unselected sample sites that contain a proportion of land (when the center 
of the site is located in the sea) because they were considered as full sites. 
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The area change proportions of all sample sites are then extrapolated to 
the study area using the Horvitz–Thompson direct expansion estimator. The 
estimator for each area class transition is the mean proportion of that change 
per sample site, given by Equation 7.2: 

where yic is the proportion of area change for a particular class transition in the 
ith sample site. The weight of the sample unit is wi and m is the sum of the sam­
ple weights. The total area of change for this class transition Zc is obtained from: 

Zc =D ⋅ yc  (7.3) 

where D is the total area of the study region. 
The usual variance estimation of the mean is known to have a positive 

bias. Alternative estimators based on a local estimation of the variance have 
been shown to reduce the bias. We use an estimator of the standard error 
based on local variance estimation: 

where 
f is the sampling rate 
weight wjj′ is an average of the weights wj and wj′ 
δjj′ is a decreasing function (7.1) of the distance between j and j′. 

The standard error is then calculated from this local variance using the total 
number of available sample sites, i.e., not accounting for the missing sites 
even if they are replaced by a local average. 

The observations (source data sets) that are used to produce these results 
are derived from satellite interpretations. These surrogates to ground obser­
vations may be subject to uncertainty (bias). The use of such surrogate data 
for assessing area change is inevitable in many areas of the tropics where no 
ground observations exist and where large areas of inaccessible forests can 
only be monitored at affordable costs by using satellite data. 

7.12 Perspectives 

An operational system for processing and analysis of a global sample of 
moderate-resolution satellite imagery has been developed to produce maps 
and estimates of forest area changes in the periods 1990–2000 and 2000–2005 
at tropical to global scale (Figure 7.4). 
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The preliminary findings of an in-depth analysis of forest land-use change 
globally (FAO and JRC 2011) can be summarized as follows: 

r� The area in forest land use declined between 1990 and 2005, with 
global mean rates of loss between 1990 and 2000 of 2.7 (±0.9) million 
ha/year, rising to a mean annual loss of 6.3 (±1.4) million ha/year 
between 2000 and 2005. 

r� Just over half the world’s forests are in tropical or subtropical  climatic 
domains. 

r� There were important regional differences in forest loss and gain. 
In particular, forest loss was highest in the tropics going from 
–5.7 (±0.8) million ha/year in the 1990s to –9.1 (±1.2) million ha/year 
between 2000 and 2005. 

The methods developed through the survey will be used to improve the 
measurement and reporting of forest area and change in forest area over 
time as part of the continual improvement of the FAO FRA process. 

These results can be an important input to national and international 
reporting processes where forest area and change statistics are needed, 
such as the Convention for Biological Diversity and the emerging initia­
tive for Reducing Emissions from Deforestation and Forest Degradation in 
Developing countries (REDD+) under the UNFCCC. 
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8.1 Introduction 

Information on the extent and change of forest cover at the national to global  
scale is important for many reasons. At the national level, it provides a basis 
for terrestrial carbon accounting, land use management, monitoring of forest  
resources, and conservation planning. Many international processes use it  
too. It helps improve the forest cover change reporting of the United Nations 
Food and Agriculture Organization (FAO), which serves as the baseline 
reference for global-scale environmental accounting and modeling. It pro­
vides keystone variables for international initiatives to reduce deforestation,  
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such as the process of reducing emissions from deforestation and degrada­
tion in developing countries (REDD+) of the United Nations Framework 
Convention on Climate Change (UNFCCC), which requires developing 
countries to have robust and transparent national forest monitoring systems. 
It is important to assess the status and threats for biological diversity as 
required by the Programme of Work on Forest Biological Diversity within 
the United Nations Convention on Biological Diversity. Environmental 
nongovernmental organizations such as World Wide Fund, Conservation 
International, and Greenpeace depend on forest degradation data to design 
forest conservation campaigns and combat illegal logging. 

Ideally, such information should be comprehensive and consistent across 
the relevant space and time. Currently, the primary source of global forest 
cover extent and change is data from national forest inventories (NFIs), 
which are aggregated by FAO to form a series of Global Forest Resources 
Assessments (FRA). The usefulness of these assessments is reduced, however, 
by a number of factors that are inherent in the aggregation approach: (1) NFI 
data from different countries differ in terms of quality and age (update rates), 
and data from developing countries are often incomplete and inconsistent; 
(2) despite the efforts of FAO, countries de facto apply different definitions of 
forest cover and use, different forest accounting and change detection meth­
ods, thus making it difficult to synthesize results; (3) forest cover and change 
information are only provided in a tabular numerical format without any 
spatial disaggregation. The FRA process has started to incorporate remotely 
sensed data through the remote sensing survey, a sample-based assessment 
of global and biome-level forest extent dynamics (FAO 2009). However, for 
many applications, a spatially exhaustive map product is required. 

Satellite remote sensing provides a viable data source to supplement NFIs 
and global forest monitoring initiatives. Forest cover extent and timely 
change estimates can be successfully retrieved from medium spatial resolu­
tion optical satellite data (Williams et al. 2006). These data are invaluable 
for the quantification of forest cover within the vast extent of remote and 
inaccessible forest landscapes, as well as for developing countries where lack 
of transportation infrastructure coupled with political instability often limit 
data collection and forest mapping on the ground. 

During the last decade, a number of forest monitoring projects have been 
developed and implemented at the national level using satellite data. Major 
timber-producing countries, such as Finland (Tomppo 1993), Sweden (Willén 
et al. 2005), and Canada (Wulder et al. 2008), use optical satellite imagery as a 
standard source of information to supplement and extrapolate field plot mea­
surements and to monitor forest management. Among developing countries, 
the Brazilian system on mapping annual deforestation (PRODES) is the largest 
and most robust operating forest monitoring system (INPE 2002). However, to 
expand these efforts to the biome and global scales, three major problems need 
to be solved: (1) methodological consistency must be improved (so that the 
results obtained at the national scale are directly comparable); (2) cost-effective 



 

 
 

 
 
 
 
 

 

   
 

 
  

 

 
 

 

 

 
  

 
 

 
 

 

  

131 Monitoring Forest Loss and Degradation at National to Global Scales 

monitoring methods must be developed (so that the cost of source data and 
data analysis will be low enough to allow national- to global-scale implemen­
tation); and (3) open data access must be ensured (so that various international 
and nongovernmental organizations and experts are able to analyze, review, 
and validate the monitoring results). 

There are two main strategies for satellite-based forest monitoring at 
a large scale: sampling and wall-to-wall mapping. Several sample-based 
approaches have been successfully implemented during the last decade at 
biome (Achard et al. 2002) and global levels (FAO 2009; Hansen et al. 2010). 
Different sampling designs were used to select classified imagery subsets, 
including regular sampling (FAO 2009) and stratified sampling (Achard et al. 
2002; Hansen et al. 2010). Both approaches, however, are challenged by low 
estimate precision due to the uneven distribution of change within forest 
landscapes (Tucker and Townshend 2000), and neither produces a spatially 
explicit result. This limits their usefulness for many applications. 

Wall-to-wall coverage of satellite data with sufficient spatial resolution 
differs from sample-based approaches in that it allows for direct mapping 
of forest cover and change and for a spatially complete quantification of 
forest dynamics at the national scale. Low spatial resolution data of the 
kind  produced by the MODIS or MERIS sensors are inadequate for direct 
estimation of forest change, as much of it occurs at subpixel scales (Jin and 
Sader 2005). Medium spatial resolution data, such as that produced by the 
Landsat sensor, do allow for accurate forest cover and change area measure­
ment (Williams et al. 2006). The use of medium spatial resolution data for 
national-scale forest monitoring has been limited until recently by the high 
data costs, the difficulty of handling large data volumes, and data analy­
sis problems in regions with persistent clouds, such as the humid tropics. 
Recently, however, changes in data distribution policies and data-processing 
algorithms have enabled fast and cost-effective national-scale forest cover 
and change assessment. 

Undoubtedly, the most important enabling factor for large-scale 
satellite-based forest monitoring is free-of-charge data availability. While 
low  spatial resolution data (AVHRR, MODIS) were freely available for 
decades, medium-resolution data have been costly until recently. In January 
2008, the U.S. Geological Survey (USGS) implemented a new Landsat data 
distribution policy that provides Landsat data free of charge. The free-of­
charge data allows financially constrained developing countries to use it 
for wall-to-wall forest mapping. For example, purchasing the 2000–2010 
Landsat data for a country like the Democratic Republic of the Congo (DRC) 
would have cost more than 6 million U.S. dollars at the pre-2008 price. These 
resources can now be spent on data processing, analysis, and validation 
of results. Medium-resolution Landsat imagery provides the best balance 
between acquisition cost and spatial resolution, despite the fact that it is 
inadequate for the detection of small-scale forest change (e.g., low-intensity 
selective  logging). Even when a complete national coverage of higher spatial 
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resolution imagery is available, the high data cost will restrict its use by 
developing countries for national monitoring purposes. 

Another important factor increasing the feasibility of using national 
wall-to-wall medium-resolution imagery for forest monitoring is the prog­
ress in computing capacity and data-processing algorithms. Modern com­
puting hardware allows for rapid processing of Landsat data at the national 
scale (from several weeks to a month). Recent progress in automated Landsat 
data processing and mosaicing has made it possible to produce cloud-free 
annual or epochal composite images for persistently cloudy areas (Hansen 
et al. 2008; Potapov et al. 2011). Nonparametric classifiers (e.g., k-nearest neigh­
bor, decision tree, support vector machines, and neural networks) allow for 
fast and precise mapping and change detection of heterogeneous land cover 
types such as forest cover (Hansen et al. 1996). 

The rapid development in the quality and access to satellite imagery has 
widened the circle of actors that can monitor forests beyond national for­
est administrations, thereby enhancing transparency. Civil society, private 
industry, and researchers can now monitor forests in support of conservation, 
business, science, and other forest resource assessment and management 
applications. NFI and monitoring data provided by national governments 
can be validated by in-country and international nongovernmental organi­
zations and expert groups, highlighting any data quality issues. This creates 
a competitive environment that stimulates the improvement of governmen­
tal policies and NFI methods. Forest monitoring transparency, however, 
requires that the source satellite data remain in the public domain and can 
be freely redistributed. Currently, only a few image data providers, including 
USGS and INPE, deliver satellite imagery under liberal licensing conditions 
that allow for sharing and redistribution of the data and derived monitoring 
products. 

Our approach to national-scale forest cover loss monitoring is an evo­
lution of an algorithm developed by Hansen et al. (2008). Data from the 
MODIS sensor were used to preprocess Landsat time-series images that in 
turn were used to characterize forest cover extent and loss. Our approach 
is based on a fully automated Landsat data processing, including scene 
selection, per-pixel quality assessment (QA), and normalization. The 
Landsat data archive was exhaustively mined, and all data that satisfied 
our  selection criteria were used for the analysis. Individual Landsat images 
were normalized using MODIS-derived surface reflectance target and used 
to derive multitemporal metrics and time-sequential composites. These 
metrics, along with the MODIS data time series, were used as independent 
variables to build supervised decision tree models for mapping forest cover 
and change. Mapping and monitoring forest degradation, which include 
assessment of low-intensity disturbance and fragmentation, required an 
alternative method based on manual interpretation of time-sequential 
Landsat image composites following an approach developed by Potapov 
et al. (2008). 
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The objective of the forest assessment and monitoring method presented 
in this chapter is to provide regular national forest cover updates at 5- and 
10-year intervals. The same algorithm can be used to produce results at finer 
temporal steps (e.g., annually), assuming that enough cloud-free observa­
tions are available; however, providing annual forest cover updates was 
beyond the objectives of this study. Further evaluation and evolution of the 
system will allow for more rapid updating of continental and global forest 
cover in the near future. 

The forest cover loss and degradation assessment algorithms have been 
applied to different forest biomes, testing and illustrating their  capability 
to be implemented at the global scale. Mapping and monitoring results 
have been published online along with Landsat image composites for use 
by national governmental and civil society organizations (European Russia 
data: http:// globalmonitoring.sdstate.edu/projects/boreal/; the DRC data: 
http://congo.iluci.org/carpemapper/; Intact Forest Landscapes data: http:// 
intacforests.org). 

8.2 Landsat Data Processing 

The Landsat remote sensing satellite program operated by the USGS pro­
vides free-of-charge data with a medium spatial resolution (30 m/pixel for 
reflective bands) suitable for the full spectra of forest monitoring studies 
from a local to the global scale (Williams et al. 2006). The Landsat program 
is unique due to its global image acquisition strategy, allowing land cover 
monitoring over the last three decades. Landsat ETM+ reflective spectral 
bands, which include visible (band 1, 450–515 nm; band 2, 525–605 nm; band 3, 
630–690 nm), near infrared (band 4, 760–900 nm), and short infrared (band 5, 
1,550–1,750 nm; band 7, 2,080–2,350 nm), provide a sufficient spectral profile for 
vegetation-type mapping and land cover change detection. The thermal infra­
red data (band 6, 10,400–12,500 nm) enable automatic cloud cover  detection. 
One of the main advantages of the Landsat spectral bands is its radiometric 
consistency and continuity between Landsat sensors (TM, ETM+, and future 
LDCM) and with the MODIS sensor, allowing intercalibration of Landsat 
and MODIS datasets. 

The complete global Landsat data archive is available through the USGS 
National Center for Earth Resources Observation and Science (EROS) from 
their Web portals: GLOVIS (http://glovis.usgs.gov) and Earth Explorer 
(http://earthexplorer.usgs.gov). The Earth Explorer data portal allows users 
to perform advanced archive inventory search as well as bulk Landsat data 
order and download. Image metadata browsing and selection is guided by 
the Worldwide Reference System-2 (WRS2) of path (ground track parallel) 
and row (latitude parallel) coordinates defining scene footprints. 

http://www.globalmonitoring.sdstate.edu
http://www.congo.iluci.org
http://www.intacforests.org
http://www.intacforests.org
http://www.glovis.usgs.gov
http://www.earthexplorer.usgs.gov
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In our study, to reduce computational time for Landsat data processing, 
only images having less than 50% cloud cover for any scene quarter, as 
estimated by the automatic cloud cover assessment (ACCA), were selected. 
However, the cloud cover threshold has been expanded to include images 
with 70%–80% cloud cover for scene footprints with low numbers of 50% 
cloud-free images. For boreal regions, only growing season images were 
selected. The annual growing season start/end dates were established for 
each Landsat WRS2 footprint using annual time series of MODIS-derived 
NDVI over a MODIS-derived forest cover mask. Image metadata analysis, 
scene selection, and bulk data ordering were performed using an automated 
metadata search tool. 

The Landsat images are normally processed as Level 1 terrain (L1T) 
corrected data by the USGS EROS. The L1T corrected data product provides 
systematic geometric accuracy by incorporating ground control points and a 
digital elevation model (DEM) for topographic accuracy. However, if insuf­
ficient ground control points or elevation data necessary for terrain correc­
tion were available, images can be delivered as Level 1 systematic correction 
(L1G). Because L1G data often feature low geometric accuracy and require 
further geocorrection, only images processed as L1T, ensuring a high geoloca­
tion precision, were used for the subsequent data processing save for the few 
coastal scene footprints where L1T corrected data were not available at all. 

Our fully automated Landsat data process included two main steps: 
(1) per-image processing including image resampling, applying at-sensor 
calibration, per-pixel observation QA, and radiometric normalization 
and (2) per-pixel observation coverage analysis, production of image 
composites, and derivation of multitemporal metrics for forest extent and 
change mapping (Figure 8.1). 

To facilitate image processing and enable per-pixel compositing, all image 
data for the nation (region) were resampled to a predefined pixel grid. The 
pixel grid was specified separately for each continent in equal-area map 
projections chosen to reduce geometric distortion. The following examples 
of national-scale forest monitoring were prototyped using pixel grids with 
60 m spatial resolution to reduce data volumes and computation time. The 
30 m spatial resolution pixel grid will be used for future continental- to 
global-scale processing. 

At-sensor calibration was applied to convert raw image digital numbers 
to top-of-atmosphere (TOA) reflectance (for reflective bands) and brightness 
temperature (for thermal infrared band) in order to minimize differences in 
sensor calibration, between sensors (TM, ETM+, and MODIS), in the sun– 
earth distance, and in the elevation of the sun. To calculate TOA reflectance 
and brightness temperature, we used the approach described in Chander 
et al. (2009), with coefficients taken from image metadata. 

The purpose of per-pixel observation QA was to select cloud-free and 
cloud shadow-free land and water observations for subsequent image 
compositing. To automatically map clouds and cloud shadows, we used a set 
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FIGURE 8.1 
Landsat data-processing workflow. 

of cloud, haze, shadow, and water detection models. The models correspond 
to a set of classification tree models (Breiman et al. 1984) derived from train­
ing data that were collected from a large sample of Landsat imagery. The 
Landsat training data and derived QA models are biome specific (separate 
models are used for tropical, temperate, and boreal forests). Training images 
were manually classified into land, water, cloud, haze, and shadow classes. 
From these images, 10% samples were randomly selected, aggregated for all 
images, and used to create generalized classification tree models. Each model 
was applied per Landsat image, yielding class probability values. Based on 
these values, a QA code was assigned to each pixel reflecting the probability 
of the pixel to be a land or water cloud-free observation, using the method 
described in Potapov et al. (2011). 

Relative radiometric normalization of Landsat imagery was used to 
reduce reflectance variations between image dates due to atmospheric 
conditions and surface anisotropy. Only reflective bands used for image 
compositing (bands 3, 4, 5, and 7) were normalized. The shortwave  visible 
bands (bands 1 and 2) were not used due to their sensitivity to atmo­
spheric haze and water vapor, precluding correct normalization. The 
thermal infrared band 6 was used for the cloud screening model but was 
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not included in the final image composite. The atmospheric correction of 
Landsat-derived TOA reflectance using time-synchronous atmospheric 
data and 6S radiative transfer code is a state-of-the art method (Masek 
et al. 2006) that should be implemented for obtaining consistent surface 
reflectance. However, simple techniques for relative image normaliza­
tion using radiometrically consistent sets of moderate spatial resolution 
data could be successfully employed to facilitate image compositing over 
large regions (Olthof et al. 2005; Hansen et al. 2008). Our approach relied 
on the correlation between Landsat TOA and MODIS atmospherically 
corrected top-of-canopy (TOC) reflectance. MODIS normalization target 
reflectance data were collected from 2000 to 2009 (10-year) global Terra/ 
MODIS 250 m data 16-day composites (MOD44C, collection 5), provided by 
the University of Maryland. The MODIS spectral bands 1, 2, 6, and 7 were 
chosen to correspond with Landsat bands 3, 4, 5, and 7. To reduce the pres­
ence of clouds and shadows, the mean surface reflectance corresponding 
to the three highest NDVI values from observations with the lowest cloud 
probability over the 2000–2009 interval were used as the normalization tar­
get. We calculated a mean bias between MODIS TOC and Landsat TOA 
reflectance for each spectral band over the land area and used it to adjust 
Landsat reflectance values. A simple empirically derived reflectance differ­
ence threshold was used to avoid areas of rapid land cover or phenological 
change. For tropical areas where the surface anisotropy effect significantly 
hindered image interpretation (Hansen et al. 2008), an additional correc­
tion for  surface anisotropy was implemented. A simple linear regression 
between the MODIS/Landsat reflectance bias (dependent variable) and 
distance from orbit ground track (independent variable) was derived for 
each reflective band and then applied to correct band reflectance values 
within the entire Landsat image. Image normalization was performed 
independently for each spectral band and Landsat image. This fully auto­
mated image  processing approach allowed us to use parallel computing 
methods, reducing the average image processing time to 12 s/image. 

Our approach for image time-series analysis integrates the classic, multidate 
image compositing method (Holben 1986), with the novel approach of using 
multitemporal metrics to characterize reflectance variation within a given 
time interval (Hansen et al. 2003). Image time series were analyzed at per-pixel 
level using all processed Landsat observations for the entire time interval. 
For decadal forest monitoring, two sets of metrics were created for two 5-year 
time intervals: 2001–2005 and 2006–2010. To facilitate data management and 
to allow parallel computing, compositing was performed independently 
for a set of rectangular tiles dividing the entire area of analysis. To create an 
observation “data pool” from which time-sequential composites and spec­
tral metrics could be derived, we preferentially selected observations with 
the least cloud/shadow contamination within the growing season. Growing 
season images are more appropriate for forest cover mapping than imagery 
captured during senescence or dormant periods. Preferential growing season 
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boundaries can be defined either on a per-scene basis (Potapov et al. 2011) or 
on a per-pixel basis using MODIS-derived annual NDVI profiles. To create a 
“data pool,” we analyzed QA flags for all available observations for the pixel. 
A set of criteria were designed to identify observations with the least cloud/ 
shadow contamination to be included in the “data pool.” Because the cloud 
shadow classification model was not tuned to water bodies, pixels with high 
water probability were selected separately. For land pixels, the number of 
growing season cloud/shadow-free observations for each 5-year interval (for 
decadal analysis) was calculated. If no cloud-free observations were found 
for any 5-year time interval, search boundaries were extended first to out-
of- season observations, then to observations with moderate cloud/shadow 
probabilities. After the “data pool” pixels were selected, all other data (flagged 
as having higher cloud/shadow probability or out of season) were excluded 
from further processing. 

The time-sequential image composites derived from the “data pool” obser­
vations represent start/end points for forest cover monitoring analysis and 
have been used for ca. year 2000 forest mapping, for change detection (for 
boreal regions), and for visual image interpretation and mapping of forest 
degradation. Several approaches for image compositing have been tested, 
including single-date compositing and multidate compositing using mean 
(or median) value or NDVI (or selected band reflectance) value ranking 
(Hansen et al. 2008; Potapov et al. 2011). We found that different approaches 
are appropriate for different applications. For change detection, the first/last 
single-date observation compositing was found to be the most suitable as it 
represents the land cover status for the first and last cloud-free image date 
in the “data pool.” For visual interpretation, on the other hand,  multidate 
composites were found to be more suitable due to low noise levels and 
consistent reflectance values within the area of analysis (Potapov et al. 2011). 
Our current automatic image compositing method produces a set of differ­
ent time-sequential composites for use as classification metrics and for visual 
analysis. 

While the time-sequential image composites are invaluable for visual image 
interpretation and for creating classification training sets, they are inade­
quate for forest cover change monitoring in tropical forests. This is because 
the rapid establishment of regrowth obscures the change  signal over decadal 
and mid-decadal time intervals. To highlight reflectance  variation within the 
analyzed time interval, a set of spectral metrics were created from the “data 
pool” observations. These metrics were designed to  capture a generic  feature 
space that facilitates regional-scale mapping and have been used exten­
sively with MODIS and Landsat data (Hansen et al. 2003, 2008, 2010). Three 
groups of per-band metrics were created: (1) reflectance values  representing 
6-year maximum, minimum, and selected percentile  values (10%, 25%, 50%, 
75%, and 90% percentiles); (2)  mean reflectance  values  for observations 
between selected percentiles (for the  min-10%, 10%–25%, 25%–50%, 50%–75%, 
75%–90%, 90%–max, min–max, 10%–90%, and 25%–75% intervals); and 
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(3)  the value of the slope of a  linear regression of band reflectance versus 
image date. Multitemporal metrics were used for forest cover and change 
classification, and selected metrics were employed for visual image analysis 
and creation of training data. 

8.3 National-Scale Forest Cover Extent and Loss Mapping 

Forest cover mapping and change detection was carried out on the basis 
of wall-to-wall image composites using a single national-scale super­
vised classification model. The classification model was built using an 
extensive set of training data collected within the entire area of analysis. 
This approach helped to avoid the problems that arise when a classifi­
cation model based on local training data is extrapolated to neighboring 
images (Wulder et al. 2008). The classification and regression tree (CART) 
algorithm was used as the main tool for image classification and change 
detection. CART is a nonparametric supervised classification model 
constructed to predict the class membership by recursively splitting the 
feature space into a set of nonoverlapping subsets and then reporting the 
class  probability within each subset. The CART algorithm has been shown 
to have a high precision for land cover mapping (Hansen et al. 1996). To 
improve the CART model stability and accuracy, a bootstrap aggregation 
(bagging) algorithm was used that corresponds to a set of trees created 
using random training data subsamples and taking the median class 
likelihood as the final result. Bagged classification tree models for  forest 
cover and change mapping were generated using the training data as the 
dependent variable and multitemporal metrics plus time-sequential image 
composites as independent variables. 

For the purpose of the regional-scale monitoring examples described 
below, forest was defined as having 30% or greater canopy cover for trees 
of 5 m or more in height. Forest cover and forest types were mapped for the 
year 2000, the first year of monitoring. All events resulting in stand replace­
ment at the 60 m pixel scale within the analyzed time interval, including 
clearings (even if followed by forest regrowth within the same time inter­
val), logging, fire, flooding, and storm damage, were mapped together as a 
gross forest cover loss class. Forest cover loss was mapped within the year 
2000 forest mask. For the decadal monitoring, forest cover loss was mapped 
independently for each 5-year interval. To build the classification tree mod­
els for forest cover extent and forest cover loss mapping, a training set was 
manually created by visual interpretation of the region-wide time-sequential 
image composites. A number of additional datasets, including freely avail­
able QuickBird images from GoogleEarthTM and expert information, were 
used as reference materials to aid interpretation. 
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Two examples of region-wide Landsat forest cover mapping and change 
detection projects are briefly described below: one within the boreal and 
temperate forests of European Russia, another within the humid tropical 
forests and dry tropical woodlands of the DRC. 

8.3.1 European Russia Forest Cover and Change Mapping 

The forest cover change analysis from 2000 to 2005 was performed within the 
northern and central administrative regions of European Russia. The area of 
analysis spans from the northern forest–tundra ecotone to the forest–steppe 
boundary in the south and includes a variety of boreal and temperate forest 
types. A total of 7,227 Landsat ETM+ images from 1999 to 2007 were selected 
based on cloud cover and growing season date  criteria. Landsat image 
normalization was performed using a MODIS-derived pan-boreal coniferous 
forest mask as the normalization target. Normalized Landsat images were 
used to create time-sequential image composites for 2000 and 2005 and a set 
of spectral metrics describing reflectance variability within ±1 year of the 
target composite date. For places with persistent cloud cover and/or a limited 
number of observations, images that were acquired more than 1 year before 
or after the target year were used for compositing and metrics. To create the 
image composite, all selected cloud-free observation dates for each pixel were 
ranked based on band 4 values. The image date corresponding to the band 
4 median was chosen as the composite date, and all reflective bands from 
this date were used to create a final ca. 2000 or ca. 2005 image composite. In 
addition to the band 4 median value composites, a set of spectral metrics was 
created on the basis of a band 5 ranking meant to capture reflectance varia­
tion within the growing season. Owing to the time-preferential compositing 
rule, more than 95% of the composite areas for the ca. 2000 and 2005 could 
be created from images acquired within ±1 year of the target year. Less than 
0.5% of the total composite area had to be excluded from analysis due to lack 
of cloud-free observations. Due to the relatively slow reforestation within the 
boreal and temperate forests, we concluded that using the composite differ­
ence would be sufficient for 5-year forest cover loss mapping (Figure 8.2). 

Forest cover for the year 2000 was mapped using Landsat composites 
and metrics for ca. year 2000 supplemented with pixel latitude and MODIS 
annual metrics. The MODIS annual metrics included mean red reflectance 
and NDVI value for the growing season and annual highest red and NIR 
reflectance representing the extent of snow cover during the winter. Forest 
cover within European Russia is generally easily defined and mapped as most 
of the natural or managed forests have high canopy densities. Additional 
MODIS metrics helped improve the forest/nonforest classification within 
wetland forests, the forest–tundra, and the forest–steppe interface. Gross 
forest cover loss from 2000 to 2005 was mapped within the resulting year 
2000 forest mask. All stand-replacing events, whether caused by logging, 
road/pipeline construction, wind throws, stand-replacement forest fires, 
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FIGURE 8.2 
(See color insert.) Forest cover loss monitoring in European Russia. (a) The ca. 2000 region-wide 

Landsat ETM+ image composite. (b–d) Zoom-in example of forest cover and change mapping 

in the Republic of Karelia: b—the ca. year 2000 image composite; c—the ca. year 2005 image 

composite; d—classification result. 

or severe insect outbreaks, were mapped together without any attempt to 
discriminate among them. Within low-intensity selective logging sites, only 
areas with significant forest impact (roads and clearings) were mapped. 

The total forest area within analyzed regions of European Russia was esti­
mated to be 150,228 thousand ha at the time around year 2000. The area of 
forest cover loss from 2000 to 2005 is 2,210 thousand ha, which represents 
a 1.5% of the year 2000 forest cover. Our forest extent estimate is within 1% 
difference with the latest available official forest cover area assessment for year 
2003 (ROSLESINFORG 2003). At the regional level, our forest area  estimates 
are well correlated (R2 of 1.00) with official statistics. A per-pixel valida­
tion with independently derived forest cover mapping results for 23 blocks 
20 km × 20 km in size within the boreal and temperate  forests showed good 
agreement, with an overall forest cover accuracy of 89% (kappa of 0.78) and 
overall change detection accuracy of 98% (kappa of 0.71). A comparison at 
the individual sample block level, however, indicated  relatively high  forest 
cover classification uncertainty along the boreal forest’s northern limit 
(overall accuracy of 87%) and low forest cover loss producer’s accuracy (58%) 
within southern temperate forests featuring small-scale logging. 
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Forest cover loss was distributed unevenly within the administrative 
regions, reflecting several forest management issues. More than 60% of the 
total forest cover loss was found within the largest northern forest regions 
including Arkhangelsk, Kirov, Leningrad, and Vologda Oblast, Komi, and 
Karelia Republics. While regional forest cover loss is linearly related to forest 
area (R2 of 0.84), the Leningrad region had the largest residual value, indicat­
ing a much higher rate of forest cover loss than the general trend within the 
area of study. One-third of the analyzed regions have a percent forest cover 
loss above the average and represent areas of intensive forest harvesting and 
frequent wildfires. These regions are located in the western and central parts 
of European Russia, close to large industrial cities and the Finnish border. 
Regions of eastern European Russia, the Urals, and northern forest–tundra 
transition have the lowest proportional gross forest loss. The three regions 
with the highest proportional forest cover loss are Vladimir, Leningrad, and 
Moscow Oblast (forest loss 3.7%, 3.5%, and 3.1% of year 2000 forest cover, 
respectively) (Figure 8.3). 

The high forest cover loss within Leningrad region is thought to be a con­
sequence of intensive forest harvesting. This is confirmed by official Russian 
forest use statistics for annual timber harvesting. The Leningrad region had 

St. Petersburg 

Moscow 

Low (<1%) 
Medium (1–2%) 
High (>2%) 

FIGURE 8.3 
Forest cover loss intensity in European Russia (percent forest loss 2000–2005 of forest cover for 

year 2000 per administrative region). 
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the highest rate of timber removal of all analyzed administrative regions 
in the period from 2000 to 2005 (ROSSTAT 2008). The intensive felling in 
the Leningrad region and the neighboring Karelia Republic (gross forest 
cover loss 1.9% of year 2000 forest cover) is stimulated by the demand from 
the Nordic countries, particularly Finland, for timber from these  border 
regions. The extensive gross forest cover loss due to industrial logging near 
the Russian–Finnish border could result in forest resource depletion and 
consequent environmental and social problems if not compensated by forest 
restoration. 

While the gross forest cover loss in the Leningrad region was connected 
mainly with industrial timber harvesting, the forest loss in the Moscow 
and Vladimir regions is a consequence of several factors, including log­
ging (partly illegal), insect outbreaks, human-caused fires, and expansion 
of settlements. The single largest forest cover loss event within these regions 
was due to the forest fires of year 2002. While in general wildfires play a com­
paratively small role in the forest dynamics within European Russia, severe 
drought conditions and human-induced fires led to extensive forest loss 
within the central regions of European Russia during the extreme fire season 
of 2002. According to official data, the area of burned forest in the Moscow 
region in 2002 was roughly 10 times higher than the mean annual burned 
area from 1992 to 2005 (ROSSTAT 2008). Another cause of forest cover loss 
around large cities is urban sprawl. For example, the expansion of settle­
ments and industrial facilities around the city of Moscow led to the conver­
sion of about 58 thousand ha of former forest and agriculture lands from 
1998 to 2008 (Karpachevskiy et al. 2009). The forests that remain around large 
industrial cities provide ecological services (e.g., water and air purification, 
natural species refugee, recreation) that are important to urban populations. 
Our results raise concerns about the fate of the remaining forests in the most 
populated regions of European Russia. 

8.3.2 Forest Cover Monitoring in the DRC 

Information on forest cover extent and change is sparse or lacking for the 
DRC due to the vast extent of intact forest landscapes (IFLs), the lack of trans­
portation infrastructure, and the continued political instability, all of which 
limit the possibilities to collect data on the ground. Satellite images are cur­
rently the only viable data source for national level mapping. We employed 
wall-to-wall Landsat imagery to map forest cover for the year 2000 and the 
gross forest cover loss between 2000 and 2010. The analysis was performed 
in partnership with Observatoire satellital des forêts d’Afrique central 
(OSFAC), a local nongovernmental organization supported by the Central 
Africa Regional Program for the Environment (CARPE) project of the United 
States Agency for International Development (USAID). 

A total of 8,881 Landsat ETM+ images were selected, downloaded, and 
processed to create complete national-scale image composites and metrics. 
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About 99.6% of the country was covered by cloud-free Landsat observa­
tions. Gaps due to persistent cloud cover were located primarily in the 
coastal areas of the lower Congo River. The data gaps were mostly due to 
an insufficient number of cloud-free observations. Even though most of the 
available Landsat 7 observations (82%) were captured during the 11 years 
of observation in coastal areas, few of them were more than 50% cloud free 
for more than a quarter of a scene. This shows that data from a single sen­
sor is often insufficient for monitoring forests in persistently cloudy tropical 
regions. A constellation of sensors with similar spectral and spatial resolu­
tion but varying overpass time and orbital cycle would be needed to provide 
sufficient observational coverage. 

Forest cover and forest types were mapped for ca. year 2000. Forest cover 
classes included humid tropical forests (defined as having greater than 60% 
canopy cover) and woodlands (canopy cover between 30% and 60%). Humid 
tropical forests were additionally stratified into primary (mature) forests and 
secondary forests (regrowing after stand-replacement disturbance). A generic 
forest cover class category was mapped, and within this layer primary and 
secondary humid tropical forest classes were subsequently characterized. 
After mapping humid tropical forest classes, the remaining forest cover was 
assigned to the woodland class. Gross forest cover loss from 2000 to 2005  
was mapped within the generic year 2000 forest mask, and forest cover loss 
2005–2010 was mapped within the remaining forest area of 2005 (Figure 8.4). 

The total forest cover extent in the DRC was estimated to be 159,529 
thousand ha, which is within 1.5% of the FAO FRA estimate for year 2000. 
Primary and secondary humid tropical forests predominate (66% and 11% 
of total forest cover extent, respectively), with woodlands occupying the 
remaining 23%. The gross forest cover loss from 2000 to 2010 was 3,712 
thousand ha or 2.3% of year 2000 forest area. About 57% of this loss occurred 
in secondary humid forests, 29% in primary humid forests, and 14% in wood­
lands. Secondary humid tropical forests experienced the most intensive loss 
(11.6% over 10 years), while the rate of loss in primary humid tropical forests 
and woodlands was considerably lower (1.0% and 1.4%, respectively). The 
gross forest cover increased by 14% between the 2000–2005 and the  2005–2010 
periods. The increase was most prominent in primary humid tropical forests 
and woodlands (by 91% and 63%, respectively). 

Visual examination of Landsat composite data suggests that almost all 
forest clearing was associated with the expansion of subsistence agricul­
ture, local charcoal production, or mining. We found no evidence of major 
forest fires or windthrow events during the study period, with the excep­
tion of forest fires caused by the repeated eruptions of the Nyamuragira  
volcano. Clearings are common in secondary humid tropical forests due to 
the practice of rotational slash-and-burn agriculture. On the one hand, the 
fallow period between clearings (not quantified in this study) would be a 
useful indicator of land degradation. Clearing of primary forests, on the  
other hand, represents the expansion of agriculture into heretofore intact 
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FIGURE 8.4 
(See color insert.) Forest cover loss monitoring in the DRC. (a) Nation-wide forest cover and 

change mapping result. (b–c) Zoom-in example of forest cover and change mapping around 

Buta: b—ca. year 2010 image composite; c—classification result. 

forests, triggering changes in ecosystem dynamics and loss of floristic and 
faunal biodiversity. Clearing generally occurs in belts around secondary 
forests and roads due to the nearly continuous distribution of popula­
tion along transportation infrastructure (Figure 8.4). Since forest clearing 
is mainly a consequence of small-scale subsistence farming, the change 
patches are small and have a mean area of 1.4 ha. 

Most of the clearing occurred in areas with high population density and 
growth rates, such as Kinshasa, Kasai-Occidental, Sud-Kivu, and Kasai-
Oriental provinces. Large industrial (Tshikapa, Mbuji-Mayi, Kolwezi, 
Lubumbashi) and artisanal mining areas (Kisangani, Beni, Buta) also exhib­
ited intensive forest loss. The intensive forest loss along the boundaries of 
Virunga National Park (NP) in the North Kivu province is related to ongoing 
political unrest. The Virunga NP has the highest loss of primary forest of all 
national parks in the country (0.9%, compared to the mean of 0.4%), making 
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it one of the most threatened natural protection areas. The loss of primary 
forest in protected areas increased by 64% from 2000–2005 to 2005–2010, 
highlighting the pressures and the need to improve the protection and 
management of nature reserves across the country. 

8.4 Global- and National-Scale Forest Degradation Monitoring 

It is well known that forest degradation, including fragmentation of natural 
landscapes, has a negative effect on global climate change and biodiversity 
(Harris 1984). However, forest degradation is a complex concept that is dif­
ficult to define and even more difficult to map. Unlike forest cover extent 
that can be quantified using straightforward biophysical parameters, assess­
ing and monitoring forest degradation is a complicated task due to the great 
variability in the forms, factors, and degrees of human impact. In the late 
1990s, a group of nongovernmental organizations including Greenpeace 
and the World Resources Institute developed a simple yet straightforward 
approach for assessment and monitoring of forest degradation called the 
IFL method (Potapov et al. 2008). An IFL is an unbroken expanse of natural 
ecosystems that shows no signs of significant human activity and is large 
enough to maintain all native biodiversity, including viable populations of 
wide-ranging species. The essence of the IFL method is to use medium spa­
tial resolution satellite imagery to locate IFLs, establish their boundaries, and 
use them as a baseline for monitoring. The IFL method provides a simple 
and feasible way to cope with the complexity of the forest degradation con­
cept by using changes in forest intactness as a proxy for forest degradation 
(Potapov et al. 2009). In this context, forest degradation is defined as a reduc­
tion in the ecological integrity of a forest landscape below a certain threshold 
due to human influence (e.g., conversion, alteration, and fragmentation), and 
forest landscapes are treated as being either intact (undegraded) or nonintact 
(altered or degraded). 

An IFL boundary is defined using a sequence of two sets of criteria spe­
cifically developed for visual interpretation of medium spatial resolution 
satellite imagery. These criteria are globally applicable and easily replica­
ble, allowing for repeated assessments over time as well as verification by 
independent assessments. The first set of criteria is used to eliminate lands 
with evidence of significant human-caused alteration from IFL status. Such 
alteration includes (1) settlements and industrial objects; (2) infrastructure 
used for transportation between settlements or for industrial development 
of natural resources; (3) agriculture and forest plantations; (4) industrial 
activities (including logging, mining, oil and gas exploration or extrac­
tion) during the last 30–70 years; and (5) stand-replacing wildfires during 
the last 30–70 years if located in the vicinity of infrastructure or developed 



 

 
 

 
 
 
 
 

  
 
 

 
 
 
 

 
 
 
 

  
 

 

 
 

 
 

146 Global Forest Monitoring from Earth Observation 

areas. Some alterations, notably low-intensity human impacts that tend to 
occur in the vicinity of settlements and roads (e.g., selective logging and 
overhunting), are not  visible in medium spatial resolution imagery. We, 
therefore, removed such areas by applying a buffer zone around settlements 
and transportation infrastructure, adapting the buffer width to the expected 
extent of human influence. For the global IFL method, a 1 km wide buffer 
was used. The second set of criteria is used to eliminate fragmented lands 
from IFL status by identifying patches of otherwise IFLs that are smaller or 
narrower than a selected threshold value. For the global analysis, a patch 
needed to meet the following criteria to qualify as an IFL: (1) minimal area of 
500 km2, (2) minimal width of at least 10 km (measured as the diameter of the 
largest  circle that can be fitted inside the patch), and (3) at least 2 km wide in 
corridors or appendages to areas that meet the above criteria. 

The IFL method was used to assess the ecological integrity of the world’s 
forest landscapes. First, the current global extent of the forest zone was deter­
mined, defined as lands with at least 20% tree canopy cover (Hansen et al. 2003) 
and including treeless areas that occur naturally within forest ecosystems, such 
as wetlands. The area under consideration was then reduced by identifying and 
eliminating developed areas and infrastructure through visual interpretation 
of Landsat imagery. The global IFL mapping was done before the Landsat data 
archive was opened, and the GeoCover Landsat orthorectified image collection 
was therefore used. A global coverage of Landsat TM data (representing an 
average date of 1990) and ETM+ data (representing an average date of 2000) 
was used to systematically assess candidate IFL areas for human-caused altera­
tion and fragmentation and to delineate IFLs. Fine-scale geospatial datasets on 
roads and settlements were used where available to facilitate interpretation. 
Infrastructure buffering was performed simultaneously with the visual image 
analysis. Altered and fragmented patches were eliminated from the area of 
study and remaining areas, if meeting the criteria, were classified as IFLs. 

The current extent of the world’s forest zone is 5,588 million ha. IFLs make 
up 23.5% of the forest zone (1,313 million ha). The remainder of the forest zone 
is affected by development or fragmentation and thus is either  managed or 
degraded. The vast majority of the world’s remaining IFLs are found within 
humid tropical and boreal forests (45.3% and 43.8% of the total IFL area, 
respectively). The distribution of IFL within these biomes is heterogeneous, 
reflecting differences in the history and intensity of economic development. 
Tropical IFLs are found mainly in the large forest massifs of the Amazon and 
Congo basins, and in insular Southeast Asia. More than half of the IFL area 
in the humid tropics is in the Amazon basin, while IFLs are largely absent 
in the lowlands of continental Asia. In the boreal region, the highest propor­
tion of IFL is in the North. IFLs occupy more than half of the forest zone in 
Canada but have nearly disappeared in Europe due to the long history of 
intensive agriculture and forest management. 

A particular strength of the IFL method is that it can easily be applied 
to different points in time, making it suitable for regular reassessments, 
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i.e., monitoring. The work is conducted through expert-based visual inter­
pretation using the same criteria and the same type of data as in the base­
line assessment (medium spatial resolution satellite imagery) but is much 
less time consuming as only remaining IFLs need to be monitored. We  
used the IFL method to assess change in IFLs from 2000 to 2010 (using 
two 5-year steps) for the three largest tropical forest countries: Brazil, the 
DRC, and Indonesia (Figure 8.5). For the DRC and Indonesia, national 
reassessments were performed using Landsat time-sequential image com­
posites (see Section 8.2), individual Landsat scenes, and ASTER imagery. 
For Brazil, the forest cover loss monitoring results from PRODES (INPE 
2002) were used to update the IFL map. 

Our results show that a significant extent of intact areas has been lost within 
all three countries after year 2000. The total proportion of IFLs lost was 5.2%, 
1.9%, and 10.0% in Brazil, the DRC, and Indonesia, respectively. The IFL loss 
in Brazil is mostly a consequence of agroindustrial development along the 
forest/agriculture boundary of “arc of deforestation.” In the DRC, the loss 
of IFLs is unevenly distributed and located mostly within active timber 
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FIGURE 8.5 
IFL decadal monitoring results for the DRC (a), Brazil (b), and Indonesia (c). 
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concessions (where selective logging is taking place) and in the vicinity of 
growing settlements (where subsistence agriculture, artisanal logging, and 
charcoal production are expanding). Conversion of IFLs to oil palm and tim­
ber plantations is common within the Indonesian lowlands of Sumatra and 
Kalimantan islands, while IFL loss in mountain areas is generally caused by 
selective logging. 

While all analyzed countries experienced reductions of IFL area, the 
change trends are different, as approximated by IFL loss between 2000 and 
2005 and 2006 and 2010. Brazil features a dramatic reduction in overall IFL 
loss from 4.1% during the first 5 years to 1.1% during the second half of the 
decade. In the DRC, the IFL loss rate was relatively stable (1.0% during 2000– 
2005 and 0.9% during 2006–2010). In contrast, the IFL loss rate in Indonesia 
increased from 4.2% to 5.8%. While no special analysis is available to explain 
these trends, we can speculate on their origins based on the global economy 
and the distribution of IFL loss. Undoubtedly, the global financial crisis that 
began in 2007 and followed by the recession during the end of the decade is 
a single most important factor behind the reduction of agroindustrial clear­
ings and timber production worldwide. This crisis was more pronounced 
in Western countries but had consequences also for their main suppliers. 
Brazil  was hit hardest of the three analyzed countries and experienced a 
negative GDP growth rate in 2009 (CIA 2011). The efforts by the Brazilian 
government to reduce forest clearing in the framework of the UN REDD+ 
program and the establishment of an effective deforestation monitoring sys­
tem have likely also played a role. The situation was different in Asian coun­
tries, including Indonesia, where GDP either continued to grow or fell only 
slightly. Indonesia accelerated the conversion of remaining lowland forest 
areas to plantations and expanded selective logging in remote mountain for­
ests, especially in the Papua island group. The IFL change dynamic is com­
plicated in the DRC due to the combination of global economic drivers and 
local political instability. While economic stagnation and years of civil war 
have resulted in a low level of forest clearing in the country, an analysis of 
nature resources management (Endamana et al. 2010) highlighted that there 
was little change in conservation indicators in the Congo basin over the last 
decade. We may conclude that more favorable economic conditions may 
accelerate the loss of IFLs in the DRC, unless improved conservation policies 
are established. 

8.5 Conclusion 

Independent, satellite-based monitoring is an important tool for provid­
ing transparent information on forest change. Government officials, land 
managers, researchers, conservationists, and civil society groups can use 
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such information to make better-informed decisions regarding the manage­
ment of forest ecosystems. We have presented a novel, automated Landsat 
image processing approach that could be used for timely monitoring of 
forest cover change at national scales. This approach is a practical solution 
for examining trends in forest cover change at regional to national scales 
and could be implemented at a fraction of the cost of individual scene 
processing in terms of workload and processing time. Regional monitoring 
has the advantage of providing internally consistent, directly comparable 
results for assessing variation in the spatiotemporal trends of forest cover 
dynamics. 

Landsat-based mapping of forest cover extent and change using super­
vised expert-driven classification is a well-established and accepted 
methodology, and reported accuracies for Landsat forest cover change 
detection range between 75% and 91% (Coppin and Bauer 1994). Our 
Landsat-based mapping algorithm has been tested for large forest regions, 
and our regional-scale Landsat forest cover change results are  comparable 
with NFI data and individual scene supervised characterizations. The 
spatial accuracies of forest cover and change detection have not been 
rigorously validated, however, due to the lack of high spatial resolution 
imagery and field data. In the future, our approach can be validated using a 
series of high spatial resolution data sets. Our results can be used to target 
sampling with high spatial resolution imagery as part of a  national-scale
 validation protocol. 

The application of our forest monitoring approach in different biomes at 
the national/regional scales illustrate the possibility that it can be used also 
at the biome/global scales. Remaining challenges include possible gaps 
in future image availability, insufficient observation frequency for some 
areas, and the lack of a rigorous validation that uses high spatial resolution 
imagery along with field data. These concerns must be addressed before 
the proposed algorithm is implemented further. Yet having the technical 
ability to conduct satellite-based monitoring is not sufficient to detect and 
solve all environmental problems caused by inefficient and irresponsible 
forest management. First, only some components of ecosystem health can 
be monitored from space. Other components such as reductions in biodi­
versity due to overhunting and poaching, effects of chemical pollution, 
and global impact caused by human-induced climate change require a set 
of in situ measurements. Second, the forest management problems that 
are highlighted by monitoring data are sometimes a result of inadequate 
governmental control of natural resources exploitation and/or political and 
economic instability. Weak and/or corrupt governance precludes the main­
tenance of forest ecosystem services and protection of nature conservation 
areas. Integrating the drivers of forest cover change with satellite-based 
forest monitoring methods into national natural resource management 
systems and international conservational initiatives are important future 
steps for national-scale monitoring activities. 
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9.1 Introduction 

The Amazonia region comprises the greatest rain forest of our planet where 
the largest continuous remaining tropical forest can be found. In Brazil, 
an accelerated anthropization process began at the end of the 1960s in 
response to governmental policies to integrate the vast Amazonian region 
with the rest of the country. This was to be achieved mainly through road 
construction and incentivized transmigration policies that consequently 
expanded the Brazilian agriculture frontier. The anthropization process has 
been most intense in the so-called arc of deforestation where the Amazon 
ecosystem meets with the savanna (cerrado) ecosystem. Since 1973, Brazil 
has had access to remote sensing imagery from the series of Landsat sat­
ellites, enabling the quantification of natural resource extent and modifi­
cation over the Amazon region. Based on the availability of these images, 
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the Brazilian government began monitoring of the Amazon forest to quan­
tify deforestation at multiyear intervals. Quantitative data on deforestation 
could then be used to assess the human impacts of the development poli­
cies, with the objective of minimizing the negative effects of the man–biome 
interaction on renewable and  nonrenewable resources. 

Since 1988, the Brazilian government has performed annual monitoring 
of the Amazon forest using Landsat-type imagery through the PRODES 
(monitoring of Amazon forest) project carried out by the Brazilian Institute 
for Space Research (INPE). PRODES has quantified approximately 
750,000 km2 of deforestation in the Brazilian Amazon through the year 2010, 
a total that accounts for approximately 17% of the original forest extent. 
PRODES data have revealed the annual deforestation rates to vary signifi­
cantly in response to domestic political, economic, and financial policies as 
well as foreign market demands. 

PRODES information is based primarily on Landsat imagery. Medium 
spatial resolution (30 m) data such as Landsat have a relatively low tempo­
ral resolution of 16-day repeat coverage, allowing for annual monitoring of 
deforestation. More rapid updating of forest disturbance is not possible with 
Landsat as the infrequent repeat coverage coupled with the persistent cloud 
cover of the humid tropical Amazon basin limits the number of viable land 
surface observations. This fact prevents the government and environment 
control agencies from making fast and adequate interventions to stop illegal 
deforestation activities. 

Near-real-time deforestation monitoring is possible using the almost daily 
images of the MODIS (MODerate resolution Imaging Spectroradiometer) 
sensor on board the Terra and Aqua satellite platforms. Thus, a new method­
ology based on MODIS images was developed for rapid detection of defor­
estation in the Amazon region through the DETER (real-time detection of 
deforestation) project (Shimabukuro et al. 2006). While MODIS is a coarse 
spatial resolution sensor, and not viable for area estimation of deforestation, 
MODIS data can be valuable as a change indicator, or alarm product in the 
service of land management policies and enforcement. 

This chapter presents an overview of the PRODES and DETER projects for 
annual and monthly monitoring of deforestation in the Brazilian Amazon, 
respectively. Initially, the Brazilian Amazon region is characterized in terms 
of its soil, biodiversity, climate, and vegetation followed by the deforestation 
history and the description of the methodology developed at INPE for the 
deforestation monitoring activities based on remote  sensing image- processing 
and geographic information system (GIS) techniques. Results from more than 
three decades of monitoring are presented and discussed, illustrating the 
rapid deforestation that occurred during this period in the Amazon region. 
The results have quantified the magnitude and trends of deforestation in the 
Brazilian Amazon. Results provide an invaluable input to decision makers in 
establishing public policies and enforcing environmental governance in the 
critical ecosystems of the Brazilian Amazon. 
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9.2 Brazilian Amazon 

The Amazon rainforest is located in South America and covers an area of 
6.4 million km2. Most of the Amazon rainforest (63%) is found in the Brazilian 
Legal Amazon (BLA) (Figure 9.1), with the remaining part being distrib­
uted among the countries of Peru, Colombia, Bolivia, Venezuela, Guiana, 
Suriname, Ecuador, and French Guiana. Much attention has been given to 
this region due to its relevance in terms of biodiversity as well its unique 
environmental services at the global scale. 

The BLA is a geopolitical unit, established in 1966 by the Brazilian 
government. The BLA is located between 5° N, 20° S and 44° W, 75° W 
and covers an area of approximately 5 million km2. It encompasses the 
whole states of Acre, Amapá, Amazonas, Mato Grosso, Pará, Rondônia, 
Roraima, Tocantins, and the western part (44° W) of the state of Maranhão 
(IBGE 2000). The BLA is included in the Amazon river basin except for the 
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FIGURE 9.1 
(See color insert.) The BLA (red) located in the South American continent. 
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southern part of Mato Grosso state (Paraguay river basin) and for part of 
Maranhão state (Parnaíba river basin). 

Soils: The Amazon region includes varied soil classes formed under great 
geological diversity, exhibiting significant variation in relief and under the 
influence of high temperatures and precipitation typical for warm super 
humid or humid equatorial climates. The natural soil fertility is relatively 
low; however, the Amazon rainforest is a self-sustainable ecosystem due 
to its own nutrient cycles, making it vulnerable to anthropic interference 
(IBAMA 2009). 

Biodiversity: The Amazon region comprises a large variety of ecosystems 
including upland forests (terra firme), swamp forests (seasonally flooded
 forest—varzeas and permanently flooded forest igapós), grasslands, and 
savannas (cerrado). An extremely rich biodiversity is found within the 
regions, including 1.5 million plant species; 3,000 fish species; 950 types of 
birds; and an enormous amount of insect, reptile, amphibian, and mammal 
species (IBAMA 2009). 

Climate: The Amazon region is characterized by its enormous ability for 
water recycling. About 63%–73% of the water is lost through evapotranspi­
ration, and approximately 50% of it is recycled within the region through  
precipitation (Salati 1985). 

The average temperature varies from 25.8°C during the rainy season (May– 
September) to 27.9°C during the dry season (October–April). The duration of 
these seasons may vary due to the large extent of the Amazon region. The aver­
age annual precipitation is 2,250 mm, varying from 1,500 mm in the northern 
and southern regions to 3,000 mm in the northwestern region of the Amazon. 

Vegetation: The Amazon region is covered by evergreen tropical rainforest 
comprised of three major classes of vegetation: (1) the evergreen tropical forest 
stricto sensu; (2) the semievergreen tropical forest; and (3) the semi deciduous 
tropical forest (IBGE 1988). Evergreen tropical forests stricto sensu are mostly 
found in very moist regions where the annual precipitation is around 3,000 
mm. They are composed of multilayered broadleaf evergreen trees that may 
reach 50 m in height, with a sparse substratum consisting mainly of herba­
ceous plants. Semievergreen tropical forests are spread along less humid areas, 
with annual precipitation varying from 2,000 to 3,000 mm. These forests are 
composed of three-layered formations of perennial and deciduous broadleaf 
trees, with the latter type being sparsely present and forming the top layer of 
the canopy. Semideciduous tropical forests differ from  semievergreen ones by 
having a larger proportion of deciduous species. 

The cerrado is a savanna-type ecosystem appearing mainly in the south­
ern and eastern portions of the Amazon region. It is composed of broadleaf, 
semideciduous, or evergreen short trees typically growing in well-drained 
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soils that are poor in nutrients, in a region where the average annual 
temperature ranges from 20°C to 26°C and annual precipitation ranges from 
1,250 to 2,000 mm with marked influence of the austral winter dry season 
(May through September). In general terms, five structural types of cerrado 
are acknowledged to exist (Oliveira-Filho and Ratter 2002): cerradão—domi­
nated by arboreous vegetation (8–12 m tall) whose canopy covers 50%–90% of 
the area; cerrado (stricto sensu)—dominated by trees and shrubs (3–8 m tall), 
with a more sparse canopy cover (above 30%); campo cerrado—formed by dis­
persed trees and shrubs, with a high density of herbaceous vegetation; campo 
sujo—dominated by herbaceous vegetation, with shrubs and small dispersed 
trees; and campo limpo—which is different from the campo sujo because it has 
no shrubs nor trees. Cerrado may also be associated with seasonally flooded 
areas. In total, the Amazon region has approximately 10%–15% of worldwide 
biomass (Houghton et al. 2001). 

Deforestation in the BLA: Deforestation in the BLA has been a concern of  several 
governmental and nongovernmental agencies, especially over the last three 
decades (Moran 1981; Skole and Tucker 1993). Although there is a  longer 
history of human occupation in the BLA, nearly 90% of the deforestation for 
pasture and agriculture occurred between 1970 and 1988, as indicated by 
estimates based on satellite images (Skole et al. 1994). 

Historically, the Brazilian territory was occupied along the coastline, 
with most of its population concentrated in this region. In an attempt  
to change this occupation pattern by increasing inland settlement, the 
federal capital was moved from the coast (Rio de Janeiro) to the Central 
region of Brazil (Brasília) in the mid-1950s (Mahar 1988). This occupation 
policy required major infrastructure investments to connect Brasília to 
the other regions of Brazil. The construction of the Belém-Brasília road 
(BR-010) in 1958 was the main factor that triggered major deforestation 
activities in the BLA (Moran et al. 1994; Nepstad et al. 1997). Subsequent 
events such as the construction of the BR-364 across the states of Mato  
Grosso, Rondônia, and Acre and the PA-150 in the state of Pará  encouraged 
even more deforestation activities, converting forest into pasture and 
agriculture land (Moran 1993). 

To introduce governance in the BLA, the SUDAM (Superintendência 
do Desenvolvimento da Amazônia) and the BASA (Banco da Amazônia) 
were established in 1966. Small producers were granted with incentives to 
invest in agriculture projects (Moran et al. 1994). Large producers were also 
granted tax incentives in exchange for converting forest to pasture land 
(Moran 1993). The incentives granted to large producers were the major 
drivers of deforestation; small producers had a lesser impact on deforesta­
tion due to the comparatively smaller scale practices of subsistence agricul­
ture (Fearnside 1993). 

Other activities with high economic value such as mining and selective 
logging also contributed to deforestation in the BLA (Cochrane et al. 1999). 
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Major deforestation in the BLA has been concentrated in the
 so-called arc of deforestation, located in the Southern and Eastern parts of 
the BLA from Acre to Maranhão states (Cochrane et al. 1999; Achard et al. 
2002). 

9.3 Deforestation Monitoring in the BLA 

Since the late 1970s, INPE has performed deforestation assessments in the 
BLA using remotely sensed imagery. These assessments were carried out 
together with the former IBDF (Instituto Brasileiro de Desenvolvimento  
Florestal) that was later incorporated with IBAMA (Instituto Brasileiro do 
Meio Ambiente e dos Recursos Naturais Renováveis). The first assessments 
were carried out with the use of images acquired by the MSS sensor (four 
spectral bands with spatial resolution of 80 m) on board the Landsat-1, -2,  
and -3 satellites, during the periods of 1973–1975 and 1975–1978 using visual 
interpretation techniques (Tardin et al. 1980). 

From 1988 onward, annual deforestation assessments were provided  
for the entire BLA using images from the TM sensor (six spectral bands 
with spatial resolution of 30 m) on board the Landsat-5 satellite, with 
improved mapping quality due to its improved spatial and spectral reso­
lutions as compared to the MSS data. The methodology applied to map the 
deforested areas was based on visual interpretation of color composites 
(5R-4G-3B) of TM images in hard copy format at the scale of 1:250,000.  
The visually interpreted polygons of the deforested areas were summed 
up to compute the total deforested land for each state and presented in 
tabular format. This method, known as analog PRODES, was performed 
until 2001. 

By the end of the 1990s, an automated methodology began to be devel­
oped and was named digital PRODES (Shimabukuro et al. 1998). However, 
the deforestation information provided by PRODES was not sufficient for 
the more frequent monitoring surveillance needs of various Brazilian gov­
ernment agencies. Therefore, the DETER project was developed based on the 
high temporal resolution images of the MODIS sensor to provide  geospatial 
information on deforestation activities in near real time and has been in 
operation since 2004. 

9.3.1 Digital PRODES Methodology 

Digital PRODES is the world’s largest remote sensing project for monitoring 
deforestation activities in tropical rain forests. It has the objective to survey 
all deforested areas within the 5 million km2 of the BLA, an area covered by 
229 Landsat scenes (Figure 9.2). 
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FIGURE 9.2 
The BLA covered by 229 TM or ETM+/Landsat images for the annual survey of deforestation. 

(From INPE, Monitoramento da cobertura florestal da Amazônia por satélites: Sistemas PRODES, 
DETER, DEGRAD E QUEIMADAS 2007–2008, Instituto Nacional de Pesquisas Espaciais, São 

José dos Campos, SP, Brazil, 2008; Mahar, D., Government Policies and Deforestation in Brazil’s 
Amazon Region, World Bank, Washington, DC, 1988.) 

PRODES depicts deforestation within the BLA. A mask of nominally intact  
forest is annually updated by identifying new deforestation events to the 
exclusion of nonforest vegetation type and other change dynamics such as  
the clearing of secondary regrowth. Input Landsat TM images are selected  
from July, August, and September acquisitions. This period is  within the  
arc of deforestation’s local dry season and represents an  atmospheric win­
dow where cloud-free images are typically available. These   images are  
rectified using nearest neighbor sampling to a UTM projection, resulting  
in a cartographic product with 50 m internal error. For PRODES, TM 3  
(red), TM   4 (NIR), and TM 5 (MIR) bands are used to generate the frac­
tion images. The legend for the maps contains the following classes: forest,  
non-forest   cerrado arbustivo, campo limpo de cerrado, campinarana, etc.), accu­
mulated deforestation from previous years, deforestation from the current  
year, hydrography, and cloud. 

Digital PRODES consists of the following methodological steps:  
(1)  generation of per pixel vegetation-, soil-, and shade-fractional images;  
(2) segmentation based on growing regions’ algorithm; (3) classification  
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based on nonsupervised classifier; (4) mapping the classes based on 
the following legend: forest, nonforest (vegetation that is not charac­
terized by a forest structure), deforestation (accumulated deforesta­
tion up to the previous year), hydrography, and clouds; and (5) editing 
of classified map based on visual interpretation to minimize omission 
and  commission  errors from the automatic classification to produce 
the  final deforestation map in digital format. PRODES products are 
available at the official PRODES website (http://www.obt.inpe.br/ 
prodes/index.html). 

A linear spectral mixture model (LSMM) is used to produce fraction 
images of vegetation, soil, and shade applied to the TM spectral bands 
(Shimabukuro and Smith 1991). This method reduces data dimensionality 
and enhances the specific targets of interest. A vegetation-fraction image 
enhances the green vegetation, a soil-fraction image enhances bare soil, and 
a shade-fraction image enhances water bodies and burned land. The shade-
fraction image was used to characterize the total previously deforested land 
in the BLA (Shimabukuro et al. 1998) up to 2001. The soil-fraction image 
is used to classify the annual deforested increment based on the contrast 
between forested and deforested land. 

The LSMM can be written as: 

where 
ri is the response for the pixel in band i of TM image 
a, b, and c are the proportion of vegetation, soil, and shade in each pixel 
vegei, soili, and shadei correspond to the spectral responses of each 

component 
ei is the error term for each band i 

Landsat TM bands 3, 4, and 5 are used to form a linear equation system 
that can be solved by any developed algorithm (e.g., weighted least square). 
The resulting fraction images are resampled to a 60 m spatial resolu­
tion in order to minimize computer processing time and disk space, with­
out losing information compatible with the 1:250,000 final product map 
scale. 

Image segmentation is a technique to group the data into contigu­
ous regions having similar spectral characteristics. Two thresholds are 
required to perform image segmentation: (a) similarity, that is the mini­
mum value defined by the user to be considered as similar to form a region 
and (b) area, that is the minimum size given in number of pixels in order 
to be individualized. The unsupervised classification (ISOSEG) method 
is used to classify the segmented fraction images. It uses the statistical 
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attributes (mean and covariance matrix) derived from the polygons of the 
image segmentation. 

After the unsupervised classification, it is necessary to check the resulting 
maps. This task is performed by interpreters using interactive image editing 
tools. Color composites of Landsat bands 5, 4, and 3 are displayed in red– 
green–blue videos. Expert-identified omission and commission errors are 
manually corrected in order to improve the classification result. Then the 
individually classified images are mosaicked to generate the final maps per 
state and for the entire BLA. For the state mosaics, the spatial resolution is 
kept at 60 m and the scale for presentation is 1:500,000, while for the BLA 
the spatial resolution is degraded to 120 m and the scale for presentation is 
1:2,500,000. 

9.3.2 DETER  Methodology 

Starting in 2004, the DETER project was implemented to provide a near-
real-time monitoring and detection of deforestation activities to support 
the Federal Government Action Plan for the Prevention and Control of 
Deforestation in the BLA. The procedure mimics the PRODES method but 
is meant to detect deforestation activities in near real time by exploiting the 
high temporal resolution of the MODIS sensor. 

The first step in the method of the DETER project is to mask the intact 
forest based on the PRODES evaluation of the previous year. The map of 
intact forest is used as a reference for identifying new deforestation events 
in near real time throughout the current year. The monitoring activity with 
MODIS imagery begins in January, but becomes more active after March due 
to less cloud cover in the BLA. This does not significantly impact results as 
there is comparatively little deforestation occurring during the rainy season 
(November through March). 

Daily MODIS images (surface reflectance—MOD09) used to identify defor­
estation spots are selected based on two criteria: (a) amount of cloud cover 
and (b) swath within sensor view zenith angle less than 35° (~1,400 km). 
The amount of cloud cover is evaluated based on quick-look images and, if 
deemed viable, a follow-on full spatial resolution assessment. The entire BLA 
is covered by 12 MODIS tiles from V09 to V11 and H10 to H13. 

The images from the MOD09 product are delivered as HDF (hierarchi­
cal data format) files projected in a sinusoidal projection (WGS84 datum). 
All data are converted to a GeoTIFF format and reprojected to the geo­
graphic coordinate system for use in the SPRING software image-process­
ing package. 

From the set of seven reflective bands of the MOD09 product, bands 
1 (red), 2 (NIR), and 6 (MIR) are used to generate the vegetation-, soil-, and 
shade-fraction images, respectively, using the linear spectral mixing model 
as previously described in the digital PRODES method. The soil-fraction 



 

 
 
 
 

 
 

 
 
 
 
 
 
 
 

 

 
 

 

162 Global Forest Monitoring from Earth Observation 

images are then segmented, classified, mapped, and eventually edited by 
interpreters following the digital PRODES protocol. 

The above procedure is carried out for every daily MODIS image 
acquired over the BLA. The results of the deforestation activities detected 
by DETER can be accumulated for different intervals such as weekly, 
biweekly, or monthly and are available in a digital format at the DETER 
website (http://www.obt.inpe.br/deter/index.html). 

9.4 Results 

9.4.1 Analog and Digital PRODES 

Tardin et al. (1980) reported that deforestation in the BLA had reached a 
figure of 152,200 km2 in 1978, which included the deforested land prior to 
1960. Since that period, the average rate of deforestation has undergone sig­
nificant changes. For example, from 1978 to 1988, the average deforestation 
rate was 21,130 km2 year–1 while it gradually decreased to 11,130 km2 in 1991. 
After 1991, it began to increase again, reaching a rate of 27,423 km2 in 2004. 
However, an abnormally high rate of 29,059 km2 was also observed in 1995. 
From 2004 on, a significant decrease in deforestation rates was observed, 
with a minimum rate of 7,000 km2 in 2010 (Tables 9.1 and 9.2). This period 
is coincident with the implementation of the DETER project as part of 
the Federal Government Action Plan for the Prevention and Control of 
Deforestation in BLA. 

Since the implementation of the digital PRODES method in 2002, the defor­
estation results are immediately provided to government agencies to imple­
ment policies that enforce the reduction of illegal deforestation. The PRODES 
results are available to the public at the Web site, and the main data on 
deforestation over the last 8 years are shown in Table 9.2. 

Figure 9.3 illustrates the annual deforestation rates from 1988 to 2010 for 
the BLA. 

Figure 9.4 presents the thematic map of the PRODES classes, showing the 
spatial distribution of the deforested areas up to 2010; note the concentration 
of forest loss in the arc of deforestation. 

The remote sensing images acquired since the early 1970s proved to be an 
important tool for monitoring the deforestation in the entire BLA and largely 
coincide with enactment of policies by the Brazilian government to promote 
the occupation of the region. Spatiotemporal data on deforestation rates have 
significantly contributed not only to government policies in reducing illegal 
deforestation activities, but also to the scientific community and the study 
of human impacts on biodiversity, greenhouse gases emission, and regional 
and global climate change. 

http://www.obt.inpe.br
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TABLE 9.2 

Deforestation Estimates (km2) from the Digital PRODES from 2002 to 2009 

States/Year 2002 2003 2004 2005 2006 2007 2008 2009 

Acre 883 1,078 728 592 398 184 254 211 

Amazonas 885 1,558 1,232 775 788 610 604 406 

Amapá – 25 46 33 30 39 100 – 

Maranhão 1,014 993 755 922 651 613 1,272 980 

Mato Grosso 7,892 10,405 11,814 7,145 4,333 2,678 3,258 1,047 

Pará 7,324 6,996 8,521 5,731 5,505 5,425 5,606 3,687 

Rondônia 3,099 3,597 3,858 3,244 2,049 1,611 1,136 505 

Roraima 84 439 311 133 231 309 574 116 

Tocantins 212 156 158 271 124 63 107 56 

Brazilian Amazon 21,394 25,247 27,423 18,846 14,109 11,532 12,911 7,008 

FIGURE 9.3 
Variation of deforested areas during 1988–2010 time period for the Brazilian Amazonia region. 

9.4.2 DETER Project 

Figure 9.5 presents an example of the DETER monitoring results, showing 
the spatial distribution of the deforestation activities detected on a monthly 
basis for 2004. 

The DETER system provides a near-real-time monitoring procedure to 
support the Federal Government Action Plan for the Prevention and Control 
of Deforestation in BLA since 2004, when a significant reduction in the defor­
estation rate started to be observed (Figure 9.3). DETER products are not 
used to estimate areas of deforestation but as an alarm to inform govern­
ment agencies on potential illegal forest-clearing activities in the BLA. The 
availability of the high temporal resolution images from the MODIS sensor 
enables monthly reporting of forest loss alarms and has contributed to slow­
ing illegal deforestation activities in the BLA. 
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FIGURE 9.5 
(See color insert.) Illustration of the example of DETER project results, showing the deforested 

areas detected during the year 2004. 

9.5 Discussion and Conclusion 

The initial monitoring of deforestation activities in BLA was performed by the 
analog PRODES product that was based on visual interpretation of hard copies 
of Landsat scenes at the scale of 1:250,000. This was an expensive and tedious 
procedure carried out by numerous interpreters on a yearly basis. However, it 
produced valuable information on deforestations rates until the 2001. 

In 2002, the analog PRODES was replaced by the digital PRODES  product 
that employs a semiautomatic method based on digital image-processing 
techniques and minor visual interpretation to correct for  classification 
errors. The great advantage of digital PRODES is the provision of defores­
tation information in a compatible format for use in GIS for ecosystem and 
land use and cover change modeling. However, the annual frequency of 
deforestation estimates was insufficient to support other government 
needs, specifically that of reducing illegal deforestation activities. 

As a consequence, the DETER project was implemented in 2004 to rein­
force public policies that have helped to reduce the deforestation rates from 
27,423 km2 in 2004 to 7,000 km2 in 2010. It is important to mention that the 
DETER does not replace but complements the digital PRODES monitoring 
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procedure. The DETER detects deforestation activities in its initial stage 
without providing an area estimate, while the digital PRODES evaluates the 
total annual deforested area (INPE 2008). 

The long-term history of the images acquired by the sensors on board the 
Landsat satellites proved to be an essential tool for monitoring the annual 
deforestation of the BLA. The Landsat record covers the majority of the 
period since the Brazilian government initially incentivized settlement of the 
BLA. The high temporal resolution of the MODIS sensor on board the Terra 
and Aqua platforms was also highly relevant to support government policies 
in stopping illegal deforestation. The result has been a consequent reduc­
tion of deforestation rates aided by the combined information from both the 
DETER and PRODES projects. 
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10 
Monitoring of Forest Degradation: 

A Review of Methods in the Amazon Basin
 

Carlos Souza, Jr. 

Amazon Institute of People and the Environment 

CONTENTS 

10.1	 Introduction 

Forest degradation is an anthropogenic process that can lead to signifi­
cant carbon loss from forests to the atmosphere. Measuring and mapping 
of forest degradation have become important tasks for advancing carbon 
payment negotiations through the reducing emissions from deforestation 
and degradation (REDD+) process (Herold et  al. 2011). The forests of the 
Brazilian Amazon are significantly impacted by forest degradation due to 
three main processes: selective logging, forest fires, and forest fragmentation. 
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These degradation dynamics operate synergistically and recurrently, result­
ing in the loss of original carbon stocks of intact forests. In extreme cases, 
forest degradation can lead to a  complete conversion of forests to other land 
cover types (i.e., pasture or agriculture lands). However, it is more common 
for forests to remain nominally as forests, but with a reduced carbon stock 
and altered biodiversity and forest structure. 

The annual area of selectively logged forest in the Brazilian Amazon is as 
large as that cleared by deforestation (Nepstad et al. 1999; Asner et al. 2005). 
Due to the significance of this disturbance dynamic to forest structure in 
the Amazon basin, several remote sensing techniques have been tested and 
developed to detect, measure, and map the areal extent of forest degradation 
(Souza and Barreto 2000; Asner et  al. 2002; Souza et  al. 2005a; Matricardi 
et al. 2007). Selective logging has also been studied in the Brazilian Amazon 
in terms of its ecological impacts, including changes in carbon stocks, biodi­
versity loss, soil compaction, forest microclimate, and biogeochemical cycles 
(Verissimo et al. 1992, 1995; Johns et al. 1996; Pereira et al. 2002). 

Forest fires (Cochrane et al. 1999; Alencar et al. 2004) and forest fragmenta­
tion (Laurance et al. 2000, 2002) have also received great scientific attention, 
including studies of the synergism between these two processes (Cochrane 
2001; Cochrane and Laurance 2002). The synergism between selective logging 
and forest fires is also well understood (Holdsworth and Uhl 1997; Nepstad 
et al. 1999). Remote sensing techniques to map forest fragments (FFs) have 
been developed since the early 1990s (Skole and Tucker 1993). However, map­
ping burned area extent is more challenging as ground fires result only in 
degradation of forest understory. Moreover, fire is often related to forests 
that have been previously logged, further complicating their quantification 
and unique contribution to emissions. 

A host of ecological and remote sensing studies of forest degradation have 
been conducted in the Brazilian Amazon, making the region a suitable area 
for a review and evaluation of optical remote-sensing techniques for REDD+ 
projects. Presenting a review of these remote-sensing techniques is the first 
objective of this chapter. By definition, REDD+ includes both forest conver­
sion as well as forest degradation, and the Brazilian Amazon is the only 
tropical forest where both deforestation and forest degradation have been 
studied in great detail. The second objective of this chapter is to demonstrate 
how remote sensing techniques can be integrated with forest biomass field 
measurements to construct reliable baselines of carbon emissions associated 
with forest degradation. In order to achieve these objectives, the chapter is 
divided into three sections. The first section presents a summary of forest 
degradation processes and their impacts on forest carbon stocks and includes 
an evaluation of those attributes of forest degradation that can be quantified 
using remotely sensed data. In the second section, the optical remote sens­
ing techniques available for detecting and mapping forest degradation are 
presented in detail, including a discussion of their strengths and limitations 
when applied to mapping changes in forest carbon stocks. The last session 
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presents a framework for integrating deforestation and forest degradation 
monitoring activities in developing baselines for REDD+. 

10.2  Field Characterization of Forest Degradation 

10.2.1 Definition 

Forest degradation is a temporary or permanent change in density, composi­
tion, or structure of natural forest attributes caused by anthropogenic factors. 
Forest degradation differs from forest changes caused by natural  phenomena, 
such as natural tree falls, windthrows, and lightning strikes, as these changes 
in forest attributes are not human induced (Lambin 1999). Several  ecological 
field studies conducted in the Brazilian Amazon have shown that selective 
logging, forest fires, and forest fragmentation are the main processes respon­
sible for forest degradation (Verissimo et  al. 1992; Barros and Uhl 1995; 
Holdsworth and Uhl 1997; Cochrane et al. 1999; Cochrane and Laurance 2002). 
Forest degradation processes operate at different intensities and time scales, 
creating a continuum from intact forests to degraded forests to  complete 
stand replacement and conversion (Figure 10.1). Defining the types of forest 
attributes affected by degradation processes is important, as is assessing the 
capabilities of remote sensing in measuring changes to these attributes. 

In the Brazilian Amazon, logging creates small clearings, known as log 
landings or logging decks, varying in size from 40 to 190 m2. Log landings 
are connected by primary logging roads that can be 6–15 m wide and account 
for additional clearings of 60–567 m2 per hectare. These roads give access to 
harvesting areas through secondary roads and/or skid trails. Tree fall gaps 
are commonly found in forest areas where commercial tree species are har­
vested, given that vine cutting is not a widespread practice in this region. 
High tree diameters (i.e., diameter at breast height [DBH] > 45 cm) are usu­
ally taken in the first harvesting cycle, but recurrent logging cycles can occur 
as smaller trees are successively harvested (i.e., 15 < DBH < 45 cm) (Figure 
10.1). The harvesting intensity varies from 1 to 9 trees per hectare (Verissimo 
et al. 1992, 1995; Barros and Uhl 1995; Johns et al. 1996; Pereira et al. 2002). 

It is well established that logging leads to favorable conditions for burn­
ing forests. Logging creates canopy gaps that allow penetration of more 
incoming solar radiation into the understory environment. As result, 
understory humidity is reduced, drying out remaining logging debris or 
slash. Agriculture fires can unintentionally escape to adjacent logged forests 
(Holdsworth and Uhl 1997). Similar to logging, forest fires can also reoccur 
in the same forest, creating a positive feedback in increasing forest degrada­
tion (Cochrane et al. 1999; Cochrane and Schulze 1999) (Figure 10.1). 

Several logging cycles and fire events can drastically deplete forest carbon 
stocks to carbon density levels similar to those of a deforested area. However, 
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FIGURE 10.1 
(See color insert.) Forest degradation processes and interactions commonly found in the 

Brazilian Amazon. Pristine forests can be subject to selective logging, creating favorable condi­

tions for burning when fires from adjacent agriculture fields unintentionally escape. Logging 

and fires can be recurrent, creating highly degraded forests. Eventually, degraded forests can be 

converted by deforestation, increasing forest edges and landscape fragmentation. If degraded 

forests are not cleared, vegetation regeneration processes can prevail given the high resiliency 

of forests. 

before this occurs, it is more common for degraded forests to be cleared. The 
fate of degraded forests in the Brazilian Amazon varies across the region. 
In areas close to deforestation frontiers, degraded forests are more likely to 
be cleared within 5–10 years, a process that increases forest edges and land­
scape fragmentation (Asner et al. 2005) (Figure 10.1). The degraded forests 
that are not converted by deforestation may regenerate, returning to their 
original carbon stocks after several decades. However, the original species 
composition may not be restored due to local extinctions (Figure 10.1). 

10.2.2 Types of Degraded Forests 

As discussed above, forest degradation creates a continuum from intact for­
est to clearings. But, for mapping purposes a typology of classes is required. 
Here, degraded forests are classified in terms of the processes and intensi­
ties associated with degradation (Souza et al. 2009). The first type of degraded 
forests in the Brazilian Amazon is logged forests. Three types of selectively 
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logged forests have been identified in this region: nonmechanized logging 
(NML), managed logging (ML), and conventional logging (CL). Agricultural 
fires are more likely to burn forests that experienced CL. CL forests have favor­
able conditions for burning due to a greater amount of slash and collateral 
canopy damage. Fires in logged forests lead to a new class of forest degrada­
tion named burned forest (BF). Finally, forest patches of different sizes can be 
isolated due to landscape fragmentation. The resulting FF class has often been 
subject to logging and/or fire. Thus, a suitable classification scheme to char­
acterize forest degradation in the Brazilian Amazon based on field ecological 
studies, associated with different processes and their interactions (Figure 10.1), 
and covering a spectrum of intensity, can be proposed as follows: 

r� Undisturbed forest (UF): Old-growth intact forest dominated by 
shade-tolerant tree species and original carbon stocks. 

r� NML: Logged forest without the use of heavy vehicles such as 
skidders and trucks, also known as traditional logging. Logging 
infrastructure (log landings, roads, and skid trails) are not built. 

r� ML: Planned selective logging where a tree inventory is conducted, 
followed by road and log landing planning to reduce harvesting 
impacts. 

r� CL: Conventional unplanned selective logging using skidders and 
trucks. Log landings, roads, and skid trails are built causing exten­
sive canopy damage. Low-intensity understory burning may occur, 
but forest canopy is not burned. 

r� BF: Either NML or logged forests (ML and CL) where forest canopy 
has been intensively burned. 

r� FF: Isolated forest patches created by deforestation with abrupt 
changes on edges to pasture and agriculture lands, or with partial 
transitional edges to secondary forests. Fragments in the study area 
are usually subject to recurrent NML and fires. 

10.2.3  Attributes of Degraded Forests Detectable Using Remote Sensing 

At the field scale, logged forests are composed of three main environments: 
(1) forest islands that were not disturbed due to poor access imposed by dif­
ficult topography and rivers, or a lack of commercial timber species; (2) areas 
where the forest has been cleared to create roads for machine movements 
(skidders and trucks) and log landings to store the harvested timber; and 
(3) canopy-damaged forests (i.e., harvested areas and areas damaged by tree 
falls and machine movements) (Souza and Roberts 2005) (Figure 10.2). All 
of these environments can be found in the ML and CL classes, but the dif­
ference is that in ML, reduced impact logging practices are conducted to 
reduce direct and collateral damages (Johns et al. 1996; Pereira et al. 2002). 
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FIGURE 10.2 
(See color insert.) Very high spatial resolution false-color infrared IKONOS image showing 

the different environments commonly found in logged and burned (LB) forests in the eastern 

Brazilian Amazon. At 1 m spatial resolution, log landings, logging roads, tree fall canopy gaps, 

and forest edges can be identified as well as “islands” of UFs and signs of regeneration. Signs 

of forest erosion along the edges between the LB forest and the recently slashed-and-burned 

forest can also be observed. (From Souza, C.M. and Roberts, D., Int. J. Remote Sens., 26, 425, 2005.) 

For these two classes, logging harvesting intensity varies from 30 to 40 m3 of 
logs per hectare (Verissimo et al. 1992; Johns et al. 1996). The NML class does 
not feature the various logging environments described above as no heavy 
machinery is used to harvest trees and a low harvest intensity is practiced 
(i.e., 5–10 m3 of logs per hectare). When fires penetrate logged forests, unde­
tected damage under the canopy is expected. Prolonged and more intense 
fires can damage the tree canopy, exposing tree branches and trunks and 
making remote  sensing detectability possible (Souza and Roberts 2005). 

Tree inventories and forest impact measurements have been conducted to 
characterize forest degradation caused by selective logging (Verissimo et al. 1992; 
Johns et al. 1996; Pereira et al. 2002). Gerwing’s (2002) was the first study in the 
Brazilian Amazon that proposed an all-encompassing approach to characterize 
the biophysical properties of a range of degraded forests. Slightly different forest 
degradation classes were proposed for this study. For example, repeated logging 
and burning were placed in separate classes. Our research group has adjusted 
Gerwing’s method to characterize classes of forest degradation that can be easily 
integrated with remotely sensed measurements (Souza et al. 2005a, 2009). 

The forest survey proposed by Gerwing (2002) consisted of measuring 
all trees with DBH >10 cm along transects of 10 m × 500 m (i.e., 0.5 ha). 
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Moreover, subparcels (10 m × 10 m; 0.1 ha) were established at every 50 m 
along transects, and all trees <10 cm DBH were surveyed. Logging and/ 
or burning impacts were measured in the subparcels, including ground 
cover, and canopy gaps were estimated using a hemispherical lens and den­
sitometer. Aboveground live and dead biomass pools were estimated for 
trees >10 cm DBH for each transect using tree inventory data and  available 
allometric equations. Ancillary information about land use and distur­
bance history (i.e., time since last disturbance, number of times the area was 
disturbed) was collected during the field surveys. The forest transects were 
randomly defined in the field, and more than three must be conducted per 
class of degraded forest. 

10.2.4 Ecological  Impacts 

Field ecological studies have provided the foundation for understanding 
the structural and compositional changes caused by forest degradation pro­
cesses on pristine UFs. For remote sensing detection of forest degradation 
impacts, the following attributes are relevant: (1) ground cover comprised 
of intact vegetation, wood debris, and disturbed soils; (2) canopy cover; 
and  (3)  aboveground live biomass (AGLB). Our research group has con­
ducted more than 100 transects in the Brazilian Amazon using an adaptation 
of Gerwing’s methodology to link field measurements with remotely sensed 
data (Souza et al. 2005b, 2009). We have observed that for a single degradation 
event, intact vegetation and canopy cover decrease with an increase in for­
est degradation intensity by 20% and 60%, respectively. Conversely, soil dis­
turbance and wood debris increase by 10% and 40%, respectively. However, 
when repeated degradation events are considered, these impacts tend to be 
more drastic. For example, repeated logging in the eastern Amazon region 
can disturb up to 70% of the original vegetation and deplete up to 40% of the 
original canopy cover (Gerwing 2002). 

The forest structure changes caused by the forest degradation processes 
described above affect species composition and carbon stocks of UFs. The 
mean AGLB of UF obtained for our transect measurements was 377 Mg per 
hectare, with minimum biomass for the Ji-Paraná site (273 Mg per hectare) 
and maximum for Santarém (497 Mg per hectare). This result is compatible 
with field AGLB estimates using very large forest plots (Keller et al. 2001) and 
within the range of average values reported for the Brazilian Amazon region 
(Malhi et al. 2006; Saatchi et al. 2007). Using the mean AGLB obtained with 
our transects and assuming that carbon makes up 50% of the forest biomass, 
we can then demonstrate how carbon stocks vary with degradation inten­
sity (Figure 10.3). A trend of reduced carbon stocks in pristine UF undergo­
ing forest degradation processes has been observed. The more significant 
change is when UF is fragmented or burned, leading to respective 28% and 
30% reductions in carbon stocks relative to original UF stocks. NML, ML,  
and CL degradation classes each experienced a <10% carbon loss. The carbon 
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FIGURE 10.3 
Change in aboveground live biomass as a function of degradation intensity. Bars represent 

standard error of the mean value and lines represent the percent change of C mean relative 

to intact forest. (From Souza, C. et al., Integrating forest transects and remote sensing data 

to quantify carbon loss due to forest degradation in the Brazilian Amazon. In Case Studies on 
Measuring and Assessing Forest Degradation. Forest Resources Assessment Working Paper 161, 

FAO, Rome, 20 p., 2009.) 

stock changes presented in Figure 10.3 are for one event of forest degradation 
only. When considering recurrent forest degradation events, carbon stocks 
can be reduced by up to 50% (Gerwing 2002). 

10.3  Remote Sensing of Forest Degradation 

Detecting and mapping forest degradation with optical remotely sensed data 
is more complicated than mapping forest clearings by deforestation because 
degraded forest “pixels” are complex environments with mixtures of dif­
ferent land cover materials (i.e., vegetation, dead trees, bark, tree branches, 
soil, shade; Figure 10.1 [Souza and Roberts 2005]). Furthermore, signs of for­
est degradation disappear within 1–2 years due to rapid canopy closure and 
understory revegetation, making spectral characteristics of degraded forests 
similar to that of UFs (Stone and Lefebvre 1998; Asner et al. 2004a,b; Souza 
et al. 2005a, 2009). 

The first attempts to map degraded forests in the Brazilian Amazon 
focused on detecting the processes responsible for degradation. Mapping 
selective logging received considerable attention, given its large extent 
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and negative ecological impacts. The annual logged area in this region has 
been considered as large as the annually deforested area, with first esti­
mates coming from socioeconomic field surveys (Nepstad et al. 1999) and 
the following ones based on satellite imagery (Asner et al. 2005; Matricardi 
et al. 2007). Techniques to map forest fire scars have also been developed, 
and forest fragmentation can be mapped with traditional techniques used 
to map deforestation. More recently, an all-encompassing approach for 
mapping forest canopy damage caused by these degradation processes 
has been proposed. Techniques for doing so are discussed in the follow­
ing sections. 

10.3.1  Remote Sensing Approaches to Mapping Selective Logging 

Several remote sensing techniques were tested and applied to local and 
regional scale studies in the Amazon region to map selectively logged forests 
(Table 10.1). These techniques can be grouped in terms of mapping goals and 
methods utilized. In terms of mapping goals, some techniques were devel­
oped to map the total forest area affected by logging, which includes forest 
canopy damage and forest clearings created by log landings and roads, and to 
map intact forest islands surrounded by logging infrastructure and canopy-
damaged areas. The second mapping goal focused on the mapping of areas 
with forest canopy damage only (i.e., intact forest islands were not included). 
In terms of methods for mapping logging, visual interpretation, semiauto­
mated, and automated techniques have been tested (Table 10.1), and most of 
them can be applied to different spatial and spectral resolution sensors. 

At high spatial resolutions (i.e., <5  m pixel size), images acquired by 
either space-borne or aerial platforms are viable for small-area analyses. 
Most of the features found in logging environments (i.e., roads, log land­
ings, tree fall gaps, and UF islands) can be easily identified at this scale 
(Figure 10.1). Fusion techniques of panchromatic and multispectral images 
are commonly applied to enhance the imagery (Read et al. 2003; Souza and 
Roberts 2005), and visual interpretation is the most common mapping tech­
nique used. However, given the cost for image acquisition and interpreta­
tion, their use in mapping and monitoring logging is limited. For these 
reasons, the methods presented in the following sections focus only on 
medium spatial resolution imagery (i.e., 10–60 m pixel size). These data are 
freely available and are regularly acquired, unlike higher spatial resolution 
commercial data sets. 

10.3.1.1 Visual Interpretation 

Watrin and Rocha (1992) pioneered the use of satellite images to map selec­
tive logging in the Amazon region. Their work focused on Paragominas 
municipality, which was the most important logging center of the Brazilian 
Amazon from 1985 to 1995 (Verissimo et al. 1992). This study used printouts 
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of Landsat TM5 bands 4 and 5 acquired in 1988 to first visually identify and 
trace on overlay paper the boundaries of selectively logged areas. Next, the 
resulting polygons were hand digitized using a geographic information 
system (GIS) at 1:100,000 scale. The authors used the boundaries of forest 
scars created by roads, log landings, and canopy-damaged areas as the 
criteria for defining logged areas. Stone and Lefebvre (1998) also used visual 
interpretation of Landsat TM5 data to map logged forests in Paragominas 
for 1986, 1988, 1991, and 1995. In 2001, a large-scale study was conducted to 
map selective logging of the Brazilian Amazon using visual interpretation 
of Landsat TM5 digital imagery. In this study, Santos et al. (2001) mapped 
logged forests at a 1:250,000 scale and estimated an average of 1,580 km2 per 
year for the period 1988–1998. 

There are drawbacks to the use of visual interpretation for mapping 
selective logging. First, defining the boundary of logged and UFs is not 
always straightforward, even when using more detailed imagery such as  
IKONOS (Read et al. 2003; Souza and Roberts 2005). Second, there is some 
level of subjectivity in defining forest degradation created by logging and 
forest fires; none of the studies that used visual interpretation methods 
define rigorous criteria for separating these two causes of forest degradation. 
Third, visual interpretation is labor intensive and may be cost prohibitive for 
operational forest monitoring projects (Table 10.1). 

10.3.1.2 Combining Remote Sensing and GIS 

The need for a faster, cheaper, and replicable method to detect and map 
selective logging has driven the development of automated techniques. The 
first attempt combined automated detection of log landings from soil frac­
tion derived from a spectral mixture analysis (SMA; covered in detail later) 
applied to Landsat images followed by the application of buffer regions 
(Souza and Barreto 2000). This technique requires field measurements to 
estimate harvesting radius from log landings in order to define the buffer 
radius. For tropical dense forest of the eastern Amazon and open forests of 
the  central–southern region, buffer sizes were 180 m (Souza and Barreto 2000) 
and 350 m (Monteiro et al. 2003), respectively; both are considered local stud­
ies. Matricardi et  al. (2001) used this buffer approach (with fixed radius of  
180 m) to estimate selective logging impact over the Brazilian Amazon, dif­
fering with the use of texture measures applied to Landstat TM5 bands 3–5 to 
detect log landings. This large-scale study estimated an annual average area 
affected by logging of 4,690 km2 per year for the period 1992–1999. This result 
is almost three times the one obtained by visual interpretation (Santos et al. 
2001), though the product is at a more detailed scale (1:50,000) (Table 10.1). 

The buffer technique for estimating logging areas also has limitations. Logging 
buffers are not fixed, and neither circular (Souza and Barreto 2000) nor squared 
buffers (Monteiro et al. 2003) adequately capture logged areas. The area affected 
by logging in most cases did not follow the contours of the buffer regions, 
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resulting in commission and omission classification errors. To overcome this 
problem, a technique that uses region growth algorithms from log landings was 
proposed (Graça et al. 2005) to map canopy-damaged areas (Table 10.1). 

10.3.1.3 SMA 

Studies in the Brazilian Amazon have shown that Landsat reflectance data 
have limited the capacity for detecting logged forests, with bands 3 and 5 pro­
viding the best spectral contrast between logged and intact forests (Stone 
and Lefebvre 1998; Asner et al. 2002; Souza et al. 2005a). Vegetation indices 
and texture filters also showed some potential for detection of canopy dam­
age created by logging (Asner et al. 2002; Souza et al. 2005a), but are more 
useful for enhancing logging infrastructure using Landsat band 5 (i.e., roads 
and log landings; Matricardi et al. 2007) (Table 10.1). 

Alternatively, SMA has been proposed to overcome the challenge of using 
whole-pixel information to detect and classify logged forests. Landsat pix­
els typically contain a mixture of land cover components (Adams et  al. 
1995). In logged forests (and also in BF and forest edges), mixed pixels pre­
dominate and are expected to have a combination of green vegetation (GV), 
soil, nonphotosynthetic vegetation (NPV), and shade-covered materials. 
Therefore, fractional images derived from SMA analyses have the potential 
to enhance the detectability of logging infrastructure and canopy damage 
within degraded forests. For example, soil fractions enhance log landings 
and logging roads (Souza and Barreto 2000), while NPV fractions enhance 
forest-damaged areas (Cochrane and Souza 1998; Souza et al. 2003), and GV 
highlights forest canopy gaps (Asner et al. 2004a). 

In SMA, the Landsat TM/ETM+ reflectance data of each pixel can be bro­
ken down into GV, NPV, soil, and shade fractions, which are the expected 
materials found in pixels within areas of forest degradation. The SMA model 
assumes that the image spectra are formed by a linear combination of n pure 
spectra, referred to as endmembers (Adams et al. 1995), such that: 

where 
Rb is the reflectance in band b 
Ri,b is the reflectance for endmember i, in band b 
Fi the fraction of endmember i 
εb is the residual error for each band 
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The SMA model error is estimated for each image pixel by computing the 
root mean square (RMS) error, given by: 

The identification of the nature and number of pure spectra (i.e., endmem­
bers) in the image scene is an important step in obtaining correct SMA 
models. Two approaches have been proposed to define endmembers. First, 
reflectance spectra can be acquired at the field level with a handheld spec­
trometer (Roberts et al. 2002). The pure spectra measured on the ground are 
named reference endmembers and need to be well calibrated to the image 
data. The second approach uses image endmembers obtained directly from 
the images (Small 2004). This approach does not require spatial and radiomet­
ric calibration between endmembers and image data since their acquisition 
is from the same sensor and scale. SMA automation is also required to make 
this technique useful for monitoring large areas. A Monte Carlo unmixing 
technique using reference endmember bundles was proposed for that pur­
pose (Bateson et al. 2000) and applied to map selective logging with Landsat 
images over the Brazilian Amazon (Asner et al. 2004a, 2005). An alternative 
approach using generic image endmembers (Small 2004) was implemented 
for the same application (Souza et al. 2005b), avoiding the need for collecting 
reference field spectra. 

A novel spectral index applicable combines SMA fractions to derive the 
normalized difference fraction index (NDFI) (Souza et al. 2005b). The NDFI 
was developed to more accurately map selective logging. The NDFI is com­
puted as: 

NDFI values range from –1 to +1. For intact forests, NDFI values are expected 
to be high (i.e., about 1) due to the combination of high GVshade (i.e., high 
GV and canopy shade) and low NPV and soil values. As forest becomes 
degraded, the NPV and soil fractions are expected to increase, lowering 
NDFI values relative to intact forest. Cleared forests are expected to exhibit 
low GV and shade, and high NPV and soil, making it possible to distinguish 
them from degraded forests as well (Figure 10.4). 

Fraction images obtained with the subpixel estimation of forest endmem­
bers through SMA enhanced the detection of forest degradation caused by 
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FIGURE 10.4 
(See color insert.) Subset of a Landsat TM image showing fractions obtained from SMA and 

NDFI. (a) High soil fraction shows logging infrastructure (log landings and roads); (b) NPV 

shows higher fraction values for canopy-damaged areas along infrastructure relative to the 

surrounding intact forest; (c) canopy damage is also identified with lower GV fraction values 

(dark colors); and (d) all the fraction information are combined to enhance the detection of 

logged forest. 

logging. As a result, spatial and contextual classifiers were developed and 
applied to fraction images improving detection and mapping of selectively 
logged forests. The techniques varied from simple GV change detection  
(Souza et al. 2002) and contextual–spectral classifiers (Souza et al. 2005b) 
to more sophisticated and computer-intensive spectral and spatial pattern 
recognition techniques (Asner et al. 2005) (Table 10.1). As a result, selective 
logging, initially considered cryptic to Landsat-like images (Nepstad et al. 
1999), became visible and measurable over large forest areas of the Brazilian 
Amazon. Subsequent analyses proved that this type of degradation was 
affecting areas as large as those cleared by deforestation, as indicated by 
field survey estimates (Nepstad et al. 1999). 

10.3.2  Classification of Forest Degradation 

The remote sensing techniques described in Section 10.3.1 represent a con­
siderable contribution toward mapping selective logging, which is one of 
the processes responsible for forest degradation. However, the application of 
these techniques has also revealed challenges in separating logging  damage 
from that created by forest fires. For example, SMA fractions have been 
used to map fire scars of previously logged forests of the eastern Amazon 
(Cochrane and Souza 1998; Cochrane et  al. 1999); the large-area mapping 
studies of selective logging did not take into account the associated fire 
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impacts on forests (Asner et al. 2005; Matricardi et al. 2007), assuming that 
the forest damage was  created only by logging. Therefore, new classifica­
tion algorithms were needed to account for the different change dynamics 
created by logging and fires. 

Morton et al. (2011a) proposed a technique, also applied to SMA fractions, 
to detect the spatial and temporal pattern of forest burn damage and recov­
ery (BDR) in order to distinguish forest degradation from logging and forest 
fires. The BDR technique was applied to Landsat and MODIS data, with the 
latter more suitable for mapping large burn scars (i.e., >50 ha). This technique 
requires robust time series including a postdisturbance recovery  signal, mean­
ing that the result is always 1 year out-of-date. An alternative to this method 
is to use spatial–contextual classifiers to separate logged forest from BFs based 
on the size and shape of the forest damage (Souza et al. 2005b) or the burn scar 
index (BSI) (Alencar et al. 2011), which is an SMA fraction-based approach to 
map BFs. However, these methods do not eliminate all spatial and  temporal 
overlaps between the different degradation processes. Therefore, it is more 
appropriate to map canopy damage without regard to the cause of forest 
degradation (either logging or forest fire), and then use contextual information 
to distinguish the process responsible for the impact. 

For example, Figure 10.5 shows the result of a time-series (1984–2010) anal­
ysis of deforestation and forest degradation for a Landsat TM scene (226/68) 
covering Sinop municipality, in Mato Grosso state, southern Amazon region. 
A decision tree classifier was built and applied to fractions (GV, NPV, soil, and 
shade) and NDFI derived from SMA to map forest canopy damage caused 
by selective logging and forest fires every year. Then, forest degradation age 
and frequency were obtained from these annual maps. Moreover, a carbon 
emission simulator (CES) (Morton et al. 2011a) model was used to estimate 
carbon emissions associated with deforestation and forest degradation and 
associated uncertainty. Forest degradation frequency enables the CES model 
to keep track of carbon stock reduction; forest degradation age is important 
to track carbon sequestration due to forest regeneration. 

Because CES is based on a Monte Carlo simulation approach, emission fac­
tors from deforestation and forest degradation and model parameters are 
defined as ranges of possible values. For example, forest carbon stock changes 
due to forest degradation in this region range from 10% to 30% (Figure 10.3). 
CES runs several times (i.e., at least 100 times), and in each simulation car­
bon stock changes associated with forest degradation can have any possible 
value between this range. Here, we assumed a uniform distribution since 
we do not have sufficient data to define the actual statistical distribution of 
carbon stock changes in degraded forests. Then, uncertainty of carbon emis­
sions associated with deforestation and forest degradation can be estimated 
with CES. 

The CES results showed that the carbon emissions for the 226/62 Landsat 
scene covering the Sinop region in Mato Grosso totaled 46.7–82 MgC 
(i.e.,  tons  of C) from 1984 to 2010 (Figure 10.5). The average total carbon  
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FIGURE 10.5 
(See color insert.) In this example, a long time series (i.e., >25 years) of Landsat TM/ETM+ data 

from Sinop, Mato Grosso state, was used to track deforestation and forest degradation. Forest 

degradation age and frequency maps are obtained from the annual maps and used together 

with the forest degradation and deforestation maps in a CES model to estimate carbon emissions 

associated with these processes. More reliable and consistent baseline scenarios for REDD+ can 

be obtained with this type of model because information about forest degradation is included 

and associated uncertainty estimated. 
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emissions were 66.5 MgC (with 95% CI). Forest degradation contributed 
19% (i.e., 8.7–16.3 MgC; average of 8.7 MgC) of the carbon emissions over 
this 26-year period. However, in 2000, 2007, and 2008, carbon emissions 
from forest degradation were higher than emissions from direct forest 
conversion. These results reinforce the need to measure carbon emissions 
associated with forest degradation (Figure 10.5). 

10.4 Forest Monitoring for REDD+ 
In a recent study conducted in the forests of Mato Grosso state, the sources 
of uncertainties for carbon emission estimates from deforestation, forest deg­
radation, and forest carbon stocks were identified for the period 1990–2008 
(Morton et al. 2011b). The sources of deforestation data showed good agree­
ment for multiyear periods (i.e., 5-year interval), but annual deforestation 
rates differed by >20%. Data sources of forest carbon stocks ranged more sig­
nificantly, between 99 and 192 MgC per hectare. Even though there were sev­
eral ecological studies of the impacts of forest degradation in this region and 
remote sensing techniques for mapping forest degradation were  available, 
existing maps of forest degradation were scarce. Additionally, the available 
forest biomass maps did not account for changes in forest carbon stocks due 
to forest degradation. As a result, full carbon accounting for REDD+ is com­
promised. The remote sensing techniques described in this chapter can be 
used to reduce this uncertainty by quantifying annual transitions involving 
degraded forest and their relation to deforestation and reduction of forest 
carbon stocks (Figures 10.1 and 10.6). 

Selective logging, forest fires, and forest fragmentation are the major 
sources of depletion of forest carbon stocks in the Amazon region through 
forest degradation, even though less carbon-impacting forest degradation 
processes have been recognized (Peres et  al. 2006). Therefore, the lessons 
from the Amazon region regarding characterization of forest degradation 
through ecological and remote sensing measurements can be useful for 
establishing a framework for the spatially explicit estimation of carbon 
emissions and their sources of uncertainty for REDD+ (Figure 10.6). The 
proposed framework is that of the United Nations Framework Convention 
on Climate Change (UNFCCC) Approach 3 and Tier 3 forest area change 
and carbon stocks estimates (Herold et al. 2011). 

First, the baseline period for the project must be defined. In our study in 
Mato Grosso, we concluded that a long (>15 years) historic assessment could 
help reduce uncertainty in remote sensing data sources. In the example pro­
vided in Figure 10.5, 1984 was defined as the baseline year for mapping for­
est changes. For mapping deforestation, there are several well-established 
remote sensing techniques and operational monitoring systems in place in 
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FIGURE 10.6 
(See color insert.) Integrating deforestation and forest degradation information to estimate 

forest carbon stock changes for REDD+ projects. 

the Amazon region. For forest degradation, Table 10.1 offers several options 
to map forest canopy-damaged areas. The reported map accuracy for the 
methods used to map logging and forest fires ranged from 89% to 93%. 
However, it is important to previously characterize the processes respon­
sible for degradation in order to support the selection of the remote sensing 
method. 

Deforestation maps over the REDD+ baseline period allow estimation 
of annual deforestation rates. Additionally, deforestation maps can also 
inform the length of forest edges and the extent of forest fragmentation. 
For example, in 1999 and 2002, more than 32,000 km and 38,000 km of new 
forest edges were created, respectively, as a result of deforestation and 
selective logging (Broadbent et al. 2008). Information on forest fragmenta­
tion and edge effects has not been taken into account in REDD+ projects, 
but can be a major source of carbon emissions (Numata et al. 2010, 2011). 
Forest degradation maps are important for providing information on 
annual rates of degradation and on forest degradation age and recurrence 
(i.e., frequency). Age and recurrence histories of forest degradation are 
necessary for updating forest carbon stock maps. Moreover, this informa­
tion can aid in designing forest inventory sampling stratification schemes 
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to estimate carbon stocks of degraded forests at field level. For example, 
forest inventories can be conducted in areas that have undergone several 
cycles of carbon depletion by degradation processes. 

Annual maps of forest degradation derived from remote sensing offer a 
reliable spatiotemporal data set to account for forest carbon stock changes in 
preparing a REDD+ baseline. Once forest inventories are conducted, spatial 
interpolation methods can be used to derive forest biomass information over 
large areas. Kriging interpolation is an approach that has been successfully 
tested in the Brazilian Amazon to estimate spatially explicit unbiased aver­
ages of forest biomass and their associated uncertainty (Sales et  al. 2007).  
Integration of krigged forest biomass maps with maps of deforestation and 
forest degradation has already been conducted and proven to be useful in 
reporting carbon emissions associated with these processes (Morton et al. 
2011a; Numata et al. 2011). 

These results are promising and support the proposed framework 
(Figure 10.6) for monitoring REDD+ projects. The challenges to applying 
this framework to other tropical forest regions include the lack of technical 
capacity for both remote sensing and forest inventory activities. However, 
options for monitoring forest degradation and deforestation going from 
a less to more rigorous approach/tier are available (Herold et  al. 2011). 
Nonetheless, there is no technical reason to exclude carbon emissions 
estimates by forest degradation from REDD+ MRV activities. 

10.5 Conclusions 

Selective logging, forest fires, and forest fragmentation are the main pro­
cesses responsible for forest degradation in the Brazilian Amazon. These 
processes can lead to significant reduction of forest carbon stocks, especially 
when recurrent forest degradation occurs. Additionally, significant change in 
forest structure also happens, allowing detection and mapping of forest deg­
radation scars with optical remotely sensed data. A range of 1–30 m of spatial 
resolution imagery has been tested in the Amazon region for mapping forest 
degradation, using different techniques. But high spatial resolution imagery 
such as Landsat has been the most important source of data to map forest 
degradation in this region. Landsat imagery is important because it covers 
very large areas and allows to construct very long (i.e., >15 years) historical 
deforestation and forest degradation credible baseline for REDD+. In terms 
of techniques, subpixel information derived from SMA offers a better way to 
enhance forest degradation scars relative to whole-pixel classifiers or textural 
metrics (which is based on pixel neighborhood information). Moreover, forest 
change detection algorithms must be designed to track history and recurrent 
events of forest degradation to better estimate carbon emissions associated 
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with these processes. Therefore, because of the large area affected and high 
impact on forest carbon stocks, baseline for REDD+ projects in the Amazon 
region must include annual forest area change and associated carbon emis­
sions due to forest degradation, as demonstrated in this chapter. 
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